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CHAPTER 1

1 Introduction and Applications

1.1 Basic Concepts and Definitions

Problems

1. Give the order of each of the following PDEs

a.  Ugy + Uyy = 0
b, Uygy + Uyy + a(x)uy, +logu = f(x, y)
C. Upgy T+ Ugyyy + a(x)ua:xy + U2 = f(l‘7 y)
d. vy +ul, +e* =0
e Uy +cu,=d

2. Show that

u(zx, t) = cos(x — ct)

is a solution of
us +cu, =0

3. Which of the following PDEs is linear? quasilinear? nonlinear? If it is linear, state
whether it is homogeneous or not.

& Ugy + Uy — 2u = 22

b. Uy =u

C. UUy+TUy; =0

d. w?+logu = 2zy

€. Upy — 2Upy + Uyy = COST
fooug(1+uy) = ugy

g (sinug)u, +u, =€*

h.  2ug, — 4ty + 2uyy + 3u =0
L Uy + Uplly — Ugy = 0

4. Find the general solution of
Ugy + Uy =0
(Hint: Let v = u,)

5. Show that y
u= F(zy)+ JJG(;)

is the general solution of
Uy — y2uyy =0



. Second order

a
b. Third order
. Fourth order

o

o,

. Second order

. First order

@D

2. u = cos(x — ct)

ug = —c- (—sin(z — ct)) = esin(x — ct)
Uy, = 1-(—sin(x — ct)) = —sin(z — ct)

= u; + cu, = csin(z —ct) — csin(x — ct) = 0.

3. a. Linear, inhomogeneous
b. Linear, homogeneous
c. Quasilinear, homogeneous
d. Nonlinear, inhomogeneous
e. Linear, inhomogeneous
f. Quasilinear, homogeneous
g. Nonlinear, inhomogeneous
h. Linear, homogeneous

i. Quasilinear, homogeneous



Ugy + Uy = 0
Let v = wu, then the equation becomes

v, + v =20
For fixed y, this is a separable ODE

dv

— = —dz
v

Inv =—x + C(y)

v=K(ye”
In terms of the original variable u we have

u, = K(y)e™ *

u=e"qy) + plz)
You can check your answer by substituting this solution back in the PDE



u

Flay) +26 (4)
w-or 6 (2) +<(5)o ()
e (2)e(2) -2 () ) (2)e ()
U = y° F(2y) + i—G” (Q)

Uyy

9
1
x x

Expanding one finds that the first and third terms cancel out and the second and last terms
cancel out and thus we get zero.



1.2 Applications
1.3 Conduction of Heat in a Rod

1.4 Boundary Conditions

Problems

1. Suppose the initial temperature of the rod was

| 22 0<z<1/2
“(‘”’O)_{ 201—z) 1/2<z<1

and the boundary conditions were
u(0,t) =u(l,t) =0,
what would be the behavior of the rod’s temperature for later time?

2. Suppose the rod has a constant internal heat source, so that the equation describing the
heat conduction is

up = kg, + Q, 0<z<l.

Suppose we fix the temperature at the boundaries
u(0,t) = 0
u(l, t) =
What is the steady state temperature of the rod? (Hint: set u; =0 .)

3. Derive the heat equation for a rod with thermal conductivity K(x).

4. Transform the equation

U = k(Ugy + Uyy)
to polar coordinates and specialize the resulting equation to the case where the function u
does NOT depend on 6. (Hint: r = /22 + 4?2, tan = y/x)

5. Determine the steady state temperature for a one-dimensional rod with constant thermal
properties and

a. =0, u(0) =1, u(L) =0

b. Q=0, u.(0) = 0, u(L) =1

c. Q=0 u(0) =1,  w(L)=¢

d. 2=2% u(0) = 1, u(L) =0

e. Q=0, u(0) =1, uy (L) +u(L) =0



1. Since the temperature at both ends is zero (boundary conditions), the temperature of
the rod will drop until it is zero everywhere.

2.
kug, +Q =0
u(0.t) =0
u(l,t) =1
= Uy = — 2
Integrate with respect to x
Q
x — T 5 A
U 3 T +
Integrate again
Q 2?
=—-—=—+4+ A B
U =2 + Ax +

Using the first boundary condition u(0) = 0 we get B = 0. The other boundary condition
will yield

Q1 B
k2+A_1
_Q
= A_2k+1
Q) _Q
= u(z) = <1+2k x Qkx

3. Follow class notes.



Uy

Uyy =

r= (:1:2+y2)%

6 = arctan (Q)
T

Ty =

DN —

X
Uyp = UpTy + U@Qw W u
Uy = UpTy + Ugby 2y+ 7 U

x
r u
T2 + y2 \/1'2 + y2 [\/ZEQ + yQ
—2zy x Y
Uy
(22 + y2)? 22+ y? | VaE T o2 O g2
2 2 2
x 2y Y Y
rr U Ugy + Uy +
22 + y2 (22 + y2)? (22 + y2)? (22 +12)2
Uyy = i U, + i (u,) *
vy /7x2+y2yr Vit Y 22 + 12 L
_1
VAT Y s (P )R 2y y y
2 2 Ur =+ 2 Urr
2ty vty [Vt +y?
—2xy n x Y n T
U Uy —u
@4y g Vg
y? + 2xy n x? n x?
7”7‘7‘ 72’07’0 7“69 7”7‘ -
PR @) T @) T @)

ro



1 1
= Ugy T Uy = Upp + 72 Ugo + 7 Ur

1 1
Uy = ]{?(U,«,« + ;U,« + T—gu%)

In the case u is independent of 0:

Uy = k(urr + %ur)




5. kug, + Q =0

a. ktug, =0
Integrate twice with respect to x

u(r) = Az + B
Use the boundary conditions

u(0) =1 implies B = 1

1
u(L) = 0 implies AL + B =0 thatis A = ——
Therefore

u(x):—%+1

b. kg, =0

Integrate twice with respect to x as in the previous case

u(r) = Az + B
Use the boundary conditions
u:(0) =0 implies A = 0

u(L) =1 implies AL + B =1 that is B = 1

Therefore
u(z) =1
C. kug, =0

Integrate twice with respect to x as in the previous case
u(zr) = Az + B
Use the boundary conditions
u(0) =1 implies B = 1

u(L) = ¢ implies A = ¢

Therefore

u(z) = pz + 1




d. kug, + Q =0

_ Q _ 2
Upy = —F = — T

Integrate with respect to x we get

1
ug(x) = —§x3 + A

Use the boundary condition
o J— . I s
uz(L) =0 implies — §L +A=0 that is A = gL

Integrating again with respect to x

.]74

1
= - 4+ -} B
U 12—|—3 T +

Use the second boundary condition

u(0) =1 implies B = 1

Therefore
xt L3
= -+ T+ 1
u(z) 19 + 3 T +
e. kg, = 0

Integrate twice with respect to x as in the previous case
u(r) = Az + B
Use the boundary conditions

u(0) =1 implies B = 1

1
uz (L) + u(L) =0 implies A + (AL + 1) = 0 that is A = I
Therefore
1
= - 1
u(z) I+1 T +

10



1.5 A Vibrating String

Problems
1. Derive the telegraph equation
Uy + auy + bu = g,

by considering the vibration of a string under a damping force proportional to the velocity
and a restoring force proportional to the displacement.

2. Use Kirchoff’s law to show that the current and potential in a wire satisfy

ix+CUt+GU =0
v+ Lig+Rt = 0

where ¢ = current, v = L = inductance potential, C' = capacitance, G = leakage conduc-

tance, R = resistance,
b. Show how to get the one dimensional wave equations for ¢ and v from the above.

11



1. Follow class notes.

a, b are the proportionality constants for the forces mentioned in the problem.

2. a. Check any physics book on Kirchoft’s law.

b. Differentiate the first equation with respect to t and the second with respect to x

Z.:vt + Cvtt + GUt =0
VUgg + Lityy + Rz = 0

Solve the first for i, and substitute in the second
igt = —Cuoy — Gy

= Ugpy — CL/Utt — GL’Ut + RZI =0

i can be solved for from the original first equation
i, = —Cuv — Gu

= Vpy — CLvy — GLvy — RCvy — RGv = 0

v+(g+§>v+R—Gv—iv
" c L)t oL oL

Or

which is the telegraph equation.

In a similar fashion, one can get the equation for i.

12



CHAPTER 2

2 Classification and Characteristics

2.1 Classification of Linear Second Order PDEs

Problems

1. Classify each of the following as hyperbolic, parabolic or elliptic at every point (x, y) of
the domain

— 22
T Uggy + Uyy = T

2% Uy — 21y Ugy + y2uyy =e
€ Uy + €YUy = u

Uy + Ugy — TUy, = 0 in the left half plane (z < 0)
22Uy, + 2TYUyy + y2uyy + zyu, + y2uy =0

Ugy + Uy, =0 (Tricomi equation)

xT

D o0 o

2. Classify each of the following constant coefficient equations

Ay + DUgy + Uyy + Uy + Uy = 2

Ugg + Ugy + Uyy + Uy = 0

3ty + 10ugy + 3uy, =0

Uy + 2Ugy + SUyy + duy + Suy +u = €”
2Upy — Agy + 2Uyy + 3u =0

Ugg + OUgy + 4Uyy + Tu, = sinw

h O o0 o

3. Use any symbolic manipulator (e.g. MACSYMA or MATHEMATICA) to prove (2.1.19).
This means that a transformation does NOT change the type of the PDE.

13



B =0 C =1 A = —Ax
hyperbolic  for x < 0
parabolic xr =0
elliptic x>0

A =0 parabolic

Q
I
@1\3

B = 2zy

A = —4e%eY elliptic

Il
e
@

B =
B = C = —x A =14+ 4z

PN

hyperbolic 0>z > —

=

parabolic x

=

C =y’ A =0 parabolic
B =0 C=x AN = —4dx
hyperbolic x <0
parabolic xr =0

elliptic x>0

14



10

Discriminant

25-16 >0

1-4<0

100 - 36 > 0

4-12<0

16-16 =0

25-16 >0

hyperbolic

elliptic

hyperbolic

elliptic

parabolic

hyperbolic

15



3. We substitute for A*, B*, C* given by (2.1.12)-(2.1.14) in A*.

A* = (B*)? —4A*C"

[2A&m: + B (&any + &) + 2CEm,)° —

4[AE + B&.g, + CE2| [An2 + Buny + O]
AAPEN? + AAE N, B (&any + &) + 8AENCEyny
B (&my + &yma)” + 4B (&amy + &) Céyny
ACPEmT — AA’En? — 4AEBn,n, — 4AECY,

— AB&E AN — ABEEynen, — ABEE,C)

- 4C§§A77§ - 4C§;anny — 4025377;.

-

Collect terms to find

A" = 4ABEn.ny + 4ABELNT + BACEE nn,
BX(E2n2 4 26,6 many + E02)

ABCELn, + ABCyny &) — 4ABEM, 1,
— 4ACEm; — AABEEmE — AB*EE e,

— ABC&Em: — 4ACE N2 — ABCE n,n,

A* —4AC (5%775 - 2€x§y77x77y + 5;”%)

+ 32 (53775 - 2§x§ynxny + 5737];3)
= J2A,

since J = (&:1y — EyM)-

16



2.2 Canonical Forms

Problems

1. Find the characteristic equation, characteristic curves and obtain a canonical form for
each

T Uy + Uy = 2

Uz + Ugy — TUyy =0 (x <0, ally)

T2 Uy + 2TYUyy + y2uyy + zyu, + y2uy =0
Ugg + TUyy = 0

Uz + y2uyy =Y

Sin® Ty, + sin 22y, + cos? ru,, =

o0 T

2. Use Maple to plot the families of characteristic curves for each of the above.

17



la.

2
TUgy + Uyy = T

A=z B =0 Cc =1
If z > 0 then A < 0 elliptic

=0 = ( parabolic

<0 > 0 hyperbolic
characteristic equation

@ B + v —4x B +v/—x

dx 2x T

Suppose < 0 (hyperbolic)

Let z = —x (then z > 0)

then dz = —dx

and

dy _ dy _ EVE_ 1

dz dx —z \/z
dz

y = £2z +c
yF2Vz=c

characteristic curves: y F 22z = ¢
2 families as expected.

Transformation: £ = y — 2+/z

n=y+2yz
Upy = Uge & + gy Ex Mo + Uny 1o + Ug Epw + Uy N
§o =& 2 = —&

1

§. = —2(%21/2) = —% = & = ﬁ

18

A = B? — 4AC = —4x



m :2<_Z_1/2> - s =
2 NE NE
£y21

nyzl

bre = (Ea)o = (%) = (%) % = - (—%23/2) -

Now = (M) = (—%)x = (‘%) o = T <% 2_3/2> B 22_3}2

fxy = fyy = Ney = Nyy = 0

1 2 1 1 1
Ugz = ;UES - ;ufn + ;“nn + 93/2 Ue = 9:3/2 Un

2 2
Uyy = U § +2Uey &y 1y + Upy 1, +ug Sy Uy Ty

=1 =1 =0 =0
= Uge + 2ugy + Upy
Substitute in the equation

1 2 1 1 1

\x/{;uff 7 Yen + ~ Unn + 5,372 e — W“n} T Uge + gy + Uy, =

—z

1

—Uge + gy — Upy — 2172

221/2

2

4u§n - z

1 1
—2\/3% + —2\/5’&77 =
The last step is to get rid of z

¢ —n = —4y/z (using the transformation)

2 4

4
2 2 n—f)
gy — —— e + w, = [1—=
R S R < 4

N jzﬁ:n—é;/z:(n—é)

19

1
Ug + Uy + Uge + 2Ugy — Upy = 2

I2

=~
(=2)?



For the elliptic case x > 0

dy _ i
dr — /x

d
dy:j:i—x

NG
y==+i2yx + ¢
=y —2ivx

n=y+2iz

1
a=gE+n =y

5= 5 —n) = —2V3

Ugy = Uga &i + 2uaﬂ Oy, ﬂx + Ugp Bg + Ug Qgr + (%] Bxx
Uyy = Uaa 0432; + 2uap oy By + ugp ﬁ; + Ua Oy + g By,

ay =05 ay =15 0z =y =0

1 1
Br= =2 ST = —am 2 B = 03 B = 527 By = 0

1
gy = ugg(—2"?)? + ug (5517_3/2)
Uyy = Uaa

1
xlugs - 7t + §u§$3/2:| + U = 2°

-1/2 ug = 72

1
usg + Uqa T 51‘

20



Again, substitute for x:
—-2/x = f3

1
= V1 = ~3 6

2
= ="
T 4ﬂ

11 1 ,\2
uaa+u55+——1u5:(—ﬂ>
2 —1p 4

1 1
Ugo + Ugp = Buﬁ+1—654

For the parabolic case = 0 the equation becomes:
0 Upp + uy, =0

o

which is already in a canonical form

This parabolic case can be solved. Integrate with respect to y holding = fixed (the
constant of integration may depend on )

Integrate again:

u(z, y) =y flz) + g(x)

21



1b. Upy + Upy — TUy, = 0

A=1 B=1 C=-x
A =1+ 4z > 0 if x > —i hyperbolic
=0 = —i parabolic
<o < -1 elliptic
dy 1+V1+da
dx 2

Consider the hyperbolic case:
2dy = (1 £ V1 + 4x)dzx

Integrate to get characteristics

2 1
2y =z + - - — (14 42)’? + ¢
3 4
1 3/2
2y—xq26(1+4x) =c
1 3/2
5:2y—x—6(1+4x)
1 3/2
77:2y—x+6(1+4x)
fo=—1—2-2 .40 +42)"? = =1 — V1 + 4z
bow = —= (1 + 42)7V? . 4 = —2(1 4 4a)7Y/?
£y22 gyy:O §xy:0

1 3
=1t e g 41+ 42)? = 1 + V1 + 4z
New = +2(1 + 4x)~1/2

y = 2 Ney = 0 Ny = 0

22



Now we can compute the new coefficients or compute each of the derivative in the equa-
tion. We chose the latter.

Uge = tge(=1 = V1 + 42)* + 2ugy (=1 — V1 + 42)(=1 + V1 + 4x)
(=1 + V1 + 42)? 4 ug[=2(1 + 42) 7] + wy [2(1 + 4a) 77

= uge[l + 2V1 + 4o + 1 + 4a] + 2ug,(1 — (1 + 4z))

Fuggll — 2V1 + 4z + 1 4 4] — 2(1 + 42) "2 ue + 2(1 + 4a) %,
Upy = 2uee (=1 — VI + 4z) + ey [2(—=1 — V1 + 42) + 2(=1 + V1 + 4x)]
+ gy 2(—=1 + V1 + 4x)

Uyy = 4uge + 2Ugy - 4+ Upy - 4

= Ugy + Uzgy — TUyy =

Uge [2 + dx 4+ 2V1 + 4a] + 2ug, (—4z) + wyy (2 + 4z — 2V1 + 4a)
—2(1 + 4z) Ve + 2(1 + 4x)" 2w,

+2uee (=1 = VI + A7) + ugy (—4) + 2uy, (-1 + VI + d2) -

4z (uge + 2ugy + Uyy) =

24+4r+2vV1+4r —2 - 2V1+4r —4dx) uee + (—8x — 4 — 8x)ug,
+ (2442 — 2T+ 42 — 2 — 21 + 4z — 4x) upyy — 2(1 + 42)7Y2 (ue — u,) = 0

—4 (1 + 4x)ug, — 2(1 + 42)™Y? (ue — u,) = 0
1
eq S+ A0 (ag — ) = 0
Now find (1 + 42)~%2 in terms of £, 1 and substitute
1 3/2
5—77:—5(1+4$)

3(n — &) = (1 + 4a)*?

(1 + 42)*% = [3(n — &)

1
Ugy = — oo (Ue — Uy)

2[3(n — ¢)]

23



1
Uen = m(un — )

The parabolic case is easier, the only characteristic is

1
= — K
Y 295 +
and so the transformation is |
E=y— §$
n=x

The last equation is an arbitrary function and one should check the Jacobian. The details
are left to the reader. One can easily show that

A*=B*"=0

Also
cr=1

and the rest of the coefficients are zero. Therefore the equation is

Upy =0
In the elliptic case, one can use the transformation z = —(1+44xz) so that the characteristic
equation becomes
dy 1£4/z
de 2

or if we eliminate the x dependence

dy _dyds 113
dz dxdz 4 2

Now integrate, and take the real and imaginary part to be the functions £ and n. The rest
is left for the reader.
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lc.

22 Uy + 20y Uy + y2uyy + TYyu, + yQUy =0
A = 2? B = 2zy C = y?

A = 42%y* — 422 y?* = 0 parabolic

dy  2zy y
dx 202 x

E=Iny—Inx = g:gn(g)jes:g
X

x
n=ux arbitrarily chosen since this is parabolic

—1 1 1
g:vZT fy:§ fmx:? gwyzo

Ne =1 77y=77m:77xy=77yy=0

1 1 1
Uoa = ~ 5 Uee + 2“517(_5) + Upy + 22 e
1 1
Uzy = T2y Uge + Usng
1 1
Uyy = —= Uee — — U
vy yQ §¢ yg 3

Uuge — 2Tugy + 1 Upy + ug — g + 20Ugy + Uge — Ug

1 1
xy(-; ug + uy,) + y2(§ ug) = 0

% Uyy + YU, = 0

Uy = — € Uy y =e*x therefore y/z = €*

This equation can be solved.

25
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1d. Upe + zuy, = 0

A=1 B=0 C=x
A = —4dx > 0 if x < 0 hyperbolic
=0 xr = 0 parabolic
<0 x > 0 elliptic
Parabolic = = 0 = Uz, = 0 already in canonical form

Hyperbolic x <0 Let (= —=x
A =4 > 0

d 2
—y—:lz%zzzlzc Note: dx = —d(

dr
dy = +/¢ (—d¢)
y + %C?’” =c
B 2 5/
§=y+ 3C

_ 23/2
n=y 3C

Continue as in example in class (See 1a)
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le. umx—i-yQuyy:y
A=1 B =0 C =y

A = —4y* <0 ellipticify # 0

For y = 0 the equation is parabolic and it is in canonical form u,, =

dy +v/—4y?

:7::i:-
dx 2 i
d
Y~ tide
Yy
Iny = +ix + ¢
¢ =lny + iz
n =lny —
1
a =Iny a; =0 ay = —
Yy
0= G, =1 By =0
Uy = Ug By + Ug Oy = Ug
Uy = Uy — + U [y = —Uq
Yy
Use = (Ug)a = upg
<1> N 1( ) 1 n 1
Uyy = | — Uq —\Ua)y = =5 Ua — Uaa
Y \y/, y y? y?

= + y? ( ! + ! )
Ugp Yy - Uy — Uaa =Y
y? y?

uaa+uﬁﬂ_ua:y

But y = e

«

=  Uga + Ugp — Uy = €

27



1f.

sin? zu,, + sin 2z Ugy + cos? TUyy = T

A = sin’z B = sin 2z = 2sin x cos x C = cos’zx

A = 0 parabolic

dy 2sin x cos x
o = T a2 = cot x
dx 2sin“ x
y =1Insinzx + ¢
=y —Insinz &, = —cotuw § =1
n=y Ne = 0 ny =1
Uy = —cot xug + uyn, = —cot T ug
Uy = Ug + Uy
1 2
Upy = (—coOt TUe), = oz + cot” wuge
Upy = —cot z (ug)y, = — cot = (uge + ugy)

Uyy = Uge + 2ugy + Uyy

2
COs™ X
L.H. S = u +sin’x

SlIl2 i

uge + 2 sin @ cos x (—cot z)(uge + ugy)

+ cos” @ (uge + 2ugy + Upy)
L.H S = COS2ZL‘U777] + ug

Therefore the equation becomes:

congcum7 +u =z
Insinez =y —&=n-—¢
sinz =" ¢ = cosfx =1-—sinfz=1—¢2"9

x = arcsin €77 ¢

1 —e2=9u,, + ue = arcsin e"~¢
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2a.

y+ 2z =c z >0
eq: Y+ 2x*sqri(z) = ¢;
char:=solve (eq,y);

chars:=seq (char, c=-5..5)

plot ( {chars},z =0..10,y = —5..5);

«—— maple command to give the equation

«—— maple command to solve for y

+«—— maple command to create several characteristic
curves for a variety of ¢’s.

+—— maple command to plot all those curves

Figure 1:

Maple plot of characteristics for 2.2 2a

Figure 2:

Maple plot of characteristics for 2.2 2a

29



2b.

1 1
yzixiﬁ(l—kllx)?’m—kc

14+42 >0

4o > —1

T > —.25

Figure 3: Maple plot of characteristics for 2.2 2b

Figure 4: Maple plot of characteristics for 2.2 2b
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2c.

In

In y

]|

= ¢ parabolic

zet = kx

“

Figure 5: Maple plot of characteristics for 2.2 2¢
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2
2d. y £ §z3/2 =c

o
\
y
P
L 23
2
A \
N\ \

Figure 6: Maple plot of characteristics for 2.2 2d

A/
¥
2
/
o ¥

Figure 7: Maple plot of characteristics for 2.2 2d

32



2e. elliptic. no real characteristic

2f. y =Insinz 4 ¢

A
A
7N

Figure 8: Maple plot of characteristics for 2.2 2f
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2.3 Equations with Constant Coefficients

Problems

1. Find the characteristic equation, characteristic curves and obtain a canonical form for

Mgy + DUy + Uyy + Uy + Uy = 2

Uy + Ugy + Uyy + Uy = 0

gy + 10ugy + 3uyy, = v+ 1

Ugg + 2Ugy + 3tUyy + 4uy + Suy +u = €*
2Upy — gy + 2uy, +3u =0

Ugg + OUgy + 4Uyy + Tu, = sinw

D Q0 o

2. Use Maple to plot the families of characteristic curves for each of the above.
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la. 4ugz, + Sugy + Uy + up + uy = 2

A =4
B =5
C =1

A =5 —4.4-1=25-16=9 >0  hyperbolic

d 5+ V9 5+ 314
dy _5EVO_5E3

de — 2-4 8

1
dy = dx dyzzdx

1
y=x+c y:Z:L’ch

77y:1

gxx:O gyy:O fxy:O 77m:0 nyyzo nxy:O

, 1 1\2
Ugpre = u§5 (—1) + 2u5n (—1) (—Z> + unn <—Z> -+ u5 -0 + un -0

uyy:u£§'12+2u£n'1'1 +unn'12+u€'0+un'0
1 1
uxy:u&(—l)-1+u§n<—1-1+1-<—Z>)—|—u7m<—1>-1+u5-0-+un-0

1
uy = ue (—1) + w, (_Z>
Uy = Ug + 1+ uy - 1

1 25 5
duge + 2uey + Zunn —dUge — Zufn_ Zunn+ Uge + 2Ugy + Uy

1
—u§—1un—|—u§—|—un =2

All wge, uy, and ug terms cancel out

9 3
—ZUEW + Zun = 2
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Uen = %un - %
This equation can be solved as follows:
Let v = u, then ue, = vg
v =tv -3
This is Linear 1% order ODE
, 1 8
Vo — —v = — =
9
Integrating factor is e3¢
,lf r_ 8 ,lé
ve 3%) = ——¢e’3
(e by = — ¢
8 8
ve 3¢ = — 2 e’%édf = —e*%§+0(77)
9 3
v=2=2+4C(nest
To find u we integrate with respect to 7
8
tn = 3 + Cn) e
8 1
u=n+es c1(n) +K(¢)
3 ——

integral of C'(n)

To check the solution, we differentiate it and substitute in the canonical form:

1 1
ug = 0+ gefer (n) + K'(€)



N 1 8+
— U, = —
3 9

Substitute in the PDE in canonical form

In terms of original variables u(z,y) = $(y — 12) + e3 =) ¢y (y — 1) + K (y— )
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1b. Upy + Upy + Uy + up = 0

A=1 B=1 C=1 AN=1—-4=-3<0 elliptic
dy 1+ /-3
dr 2

2dy = (1 £ V/3i)dx

€ =2y — (1 4+ V3i)x n =2y — (1 - V3iz
1
a=g5E+n=2-u
1
525(5—77)2—\/%
1
ay, = —1 oy = 2 Oy = 0 Ozy = 0 Qyy = 0

5$:_\/§ 6?;:0 6$x:O ﬁxyzo ﬁyyz(]

Una + 2unpg (—1) (—\/5) + ugs + 3 + Uaa(—2) + Uup (—2\/5) +4Upy — Uy — \/§Ug =0

Uzy

SUga + 3Ugg — Uq — \/gug =0

1 3
Ugo + Ugs = gua + %uﬂ'
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le. Bugy + 10uUpy + 3uyy = ¢ + 1
A=C=3 B=10 A =100 — 36 =64 > 0 hyperbolic
dy 10 £ 8

/3
= 1/3
- s N/

1
E=y— 3z =Y - 37
£x2—3 fyzl gwxzo gxy:() gyy:()

7]a:=_§ ny:]- nacac:O nfcyzo nyy:O

3 <u§§ (=3)* + 2ugn (—3) (_%) + U (_%)2>

+10 (ugg(—3) + Ugq <_3 - %) + Uy <_%>>

+3(uge + 2ugy + Uyy) = w + 1

1 _
= — =X
n Yy 3
§—n=—3
3
x—g(n—ﬁ)
64 3
ugn:_5£1)2(77_£)_6_34
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To Find the general solution !

9 3
ugn = — 55 (1= &) = &=
9 1 3
ug = — 512(277 =18 = g+ f(E)
9 1
u = 512(2 é——fn)——n§+F(§)+G(n)
9

= o SEE M) — e+ F () + G ()

u(@, y) = 10924 <y N %HC) ly = 32) (%x N 3x> _6_34 < N %HC) ly = 32)

+ F(y — 3x) +G(y—%m)

zﬁ-%gw@—%x) (y—3w)—6—i<y—%x) (y — 3z) + F(y — 3x)
+G (y — 5x)
u(x, y) = (—Eggx - 6_?21) (y — %x)(y —3z)+ F(y — 3z) + G (y—%x)
check !
we =~ (y = 30)(y — 30) + (~osw — ) (~3) (v — 30)
(e ) (v 50) (9 - 3w =30 -5 (v )
Y= (_%8 634> (y=3v)+ (_Egsx B 6_34> (y_%x)JrF/(y_BxHG/ (y_%x)
o = = (=3 ) (0 = 30) + T (= 39) + (—gt — =) — 5 (-0 (v — )
- (_%) (y_ %x> _3(_%)(_%33 a 634> O+ GH
e = 52 (y = 30) F (5= 32) +2(~roox — 2) +OF(y = 30) + 5C"(y — 50)
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3 3 3 3 1 3 3

1
= 2 (=33 =3 (g — 2y m L (y—Zp) — = (g — 2
Uy s W =32 = 3017 — 1) g W37 5 (g ~ 6

14 ]' 1! 1
=3 (y - 32) — 3G (y — 3o)

3 3 3 3 1

_ 22 22 a2l _ 3 G//(__)

UYyy TR T IR At L y—3*

3 27 1 3 3 1
Uy + 10Uyy + 3uy, = — (y — 32) + — (y—zx) + 6 (——x — —) + 27TF" + 3 G"

64 64 3 128 64

30 15 1 100 / 3 3 10
- _3 _ _ _ o . _30F//__G/l
g W =37 — g (v —37) — 3 < 128" 64) 3

3 3
- . F// 1!
+0 < 128" 64> + 357 + 3G
12 12 1 64 3 3
BT AR A e S P T
9 1 1
= —r — —v+ -z +1 =z +1

16 16 2

checks
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1d. uge + 2ugy + 3uyy + 4u, + Suy + u = €*

A=1 B=2 C=3 A=4-12=-8<0 elliptic

@:L V_8:1:|:2'\/§
dx 2

y=(1+ivV2)z+C

E=y—(1+iV2)z

n=y—(1-iV2z

a=y—=x

= V2 spo L

’ v

o, = —1 oy, =1 gy = Qlgy = Quy = 0

Bx:_\/i ﬂyzo ﬁ:m:ﬁxy:ﬂyy:o
uaa(—1)2 + 2uaﬁ : \/5 + ugg - 2
+2 (—uaa + Uqp (— \/5)) + 3 Uga +4(—ua - \/iug) + bug + u = €*

2Uaa + 2ugps + Uq —4\/§uﬁ +u =€

Una + Uss = — 2 +2V2us — Lu + Le /Y2
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le. 2uyy — 4Uzy + 2uyy + 3u = 0

A=C=2 B=-4 A =16—-16 =0

parabolic
@_—4i0__1
dv 4 a
dy = —dx

£:y+$ éle fyzl g:v:v:facy:fyyzo

n=x 77x:177y=077m=77xy=77yy:0

2(uge + 2ugy + upy) —4 (Ueg + Ugy) +2uce +3u = 0

22Uy, + 3u =0
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. upy + dugy + 4uy, + Tu, = sin x

A=1 B=5 C=4

dy 543

o220
dx 2 ~

g:y—llx fac:_4

n=y-x

nx:_l

=1 g:v:v = facy

=1 Nexw = Nay

A=25-16=9>0

:’r]yy:O

16uge + 2uey - 4 + upy + 5 (—duge + uey (=4 — 1) + uyy, (=1))

+4 (uge + 2ugy + uyy) + 7(ue + uy) = sin x

—9ue, + T(ue + u,) = sin

= Tl + ) — o s
ugn—9u§ Uy gsmx
£§—n= -3
o n=¢
rT = —
3

44
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2a. y=1x 4+ c

y:ix—kc

Figure 9: Maple plot of characteristics for 2.3 2a
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2b. elliptic . no real characteristics
2c. y=3r+c

y:éx—kc

Figure 10: Maple plot of characteristics for 2.3 2¢
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2d. elliptic . no real characteristics

2¢. y=x+c see 2a

2f. y =4z + ¢

y=2x+c — (see 2a)

Figure 11: Maple plot of characteristics for 2.3 2f
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2.4 General Solution

Problems
1. Determine the general solution of

Ugy — C%uyy =0 ¢ = constant
Ugpy — SUgy + 2Uyy = 0

Ugg + Uzy = 0

Ugg + 10Uy + Yuyy =y

Ao op

2. Transform the following equations to

U§77 =cU
by introducing the new variables
U = ye~(@&+6n)

where «, (8 to be determined

A, Ugy — Uyy + 3Uy — 2Uuy +u =0

b, 3ty + Tgy + 2uyy +uy +u =0
(Hint: First obtain a canonical form)
3. Show that )

Ugy = QU + by — —u +d

4
is parabolic for a, b, d constants. Show that the substitution

u(z, t) = v(av,t)e%‘E

transforms the equation to
b
Upe = QU + de™ 27
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Uy guyy:()
A=1 B =0
d +2

dy _ 42 _ 1
dx 2 c

1
y==x-2 + K
c

1

§=y+-x
c
1
n=y - -x
c

Canonical form:
ugny = 0

The solution is:

u=f(&) +gm)

4
A =—>0

C

2

hyperbolic

Substitute for £ and 7 to get the solution in the original domain:

u(r,y) = f(y + %x) + 9y — Ew)
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1b. gy — 3ugy + 2uy, = 0
A=1 B = -3 C =2 A=9-8=1 hyperbolic

dy —-3+1 72
29 _ 1
dx 2 \

y = 2z + K,

y=—x + Ky

§=y+ 2z §e = 2 & =1

n=y+zr =1 n=1

Uy = 2Ug + Uy

Uy = Ug + Uy

Usw = 2 (2uge + ugy) + 2ugy + uny

= Upe = duee + dugy, + Uyy

Uy = 2 (uge + Ugy) + Ugy + Upy = 2uge + Bugy + Uy

Uy = Ugg + 2Ugy + Uy

Uz — By + 2uyy = uge + duey + gy — 3 (2uge + 3ugy + uyy) +2 (Uee + 2ugy + uyy)
= TUgq

= Ugy, =0

The solution in the original domain is then:

w(z, y) = fly + 2x) + g(y + )

20



A= B =1 C =0 A =1 hyperbolic
dy +1+1 1

= = 0

dx 2 ~

Yy = +x + K1

y = K

n=y n, =0 mn =1
Uy = —Ug +u”ﬂﬁz = —Ug
=0
Uy = Ug + Uy
Ugy = Uge
Ugy = —Ugg — Ugy
Upy + Ugy = —Ugy = 0

The solution in the original domain is then:
u=fly—2x)+gQ)

o1



1d. ugy + 10ugzy + uyy, = ¥y
A=1 B =10 C =9 A =100 —-36 = 64 hyperbolic

dy 10 £8 9
“y 1
dx 2 N
E=y—9r & =-9 §=1

n=y—-—x n=-1 mn =1
Uy = —ug — uy
Uy = Ug + Uy

Uy = —9(=uge — ugy) — (—uey — uyy)
= 81’&55 + 18’&577 + unn

Uy = =9 (Uge + ugy) — (Ugy + Uyy)
= —Ouge — 10ugy —uyy

Uyy = Uge + 2ugn + Uyy

Ugy + 10Uz, + Uy, = (81 — 90 + 9)uge + (18 =100+ 18)ug, + (1 — 10 + 9wy, = y
N— ————
=0 =0

—64ue, = y

Substitute for y by using the transformation

E=y— 9

I = 9y — 9z
£—9n = —8y
I —¢

y= 73

ey = —8 _ 5 9
K —64 512 512

§ 9

Y T 512 T 512
To solve this PDE let ¢ be fixed and integrate with respect to n

02



1
== 551 ga” O
_1527] 9 1 9
= a5 2t O

The solution in zy domain is:
(y — 92)*(y — ) 9

u(x, y) = — (y — 9z)(y — x)> + F(y — 9z) +g(y — x)

1024 1024
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2a. Upy — Uyy + Uy — 2uy +u =0

U = ye(@&+08n)

A=1 B =0 C =-1 AN =4 hyperbolic

E=y—x
n=y+tw
Uy = —Ug + Uy

Uy = Ug + Uy

Uss = —(—Uge + Ugy) + (“Ugy + Uyy) = Uge = 2ugy + Upy

Uy = Ugg + 2Ugy + Uy

—4ug, — 3ug + 3u,y — 2ug — 2u,) +u =0

—4ug, — Sug + uy +u =0

U= ue @88 = o = [Jela&+hn

ug = U el t8n o7 el@&+B8m

u, = Une(a§+ﬁn) + 5U€(a§+ﬁn)

Uey = Ugne(a§+ﬁn) + BU; ela+pm) o aUne(aEJrﬁn) + aﬁUe(aEwLﬁn)
—4Uey, — 48U — 4a U, — 4aBU — SU¢ — 5aU + U, + U + U =0

—4Ue, + (=48 = B)Ue + (—4a + VHU, + (—4afB — 5a+ 4+ 1)U =0

% I3 I3
p=—5/4 a =1/4 —4(1/4)(=5/4) — 5(1/4) + (=5/4) + 1 =—1/4
AUy — iU =0
1 .
Ueyy = — 16 U required form

o4



2b. gy + Tugy + 2uyy, + uy +u =0

A=3 B =17 C =2 AN =49 — 24 = 25 hyperbolic

2
ay _ 7251
dx 6 3

Uy = —2Ug — gun

Uy = Ug + Uy

1 1 1
Upy = —2 (_QUEE - gufn) 3 (_QUEU - §UU77>
4 1
Uy = duge + 5“577 + §u7m
1

Uy = —2 (uge + Ugy) — g(“&n + Uyp)

7 1
Ugy = —2Uge — guﬁn - g“nn

Uyy = Uge + 2Ugy + Uyy

49
due, — gu&] + dug, + ug + uy +u =0

—2ugy + ug + uy +u =0

Use last page:

—25

T(Ugn—FﬁUg‘f‘C&Un—i—&ﬂU)+U§+C(U+Un+BU+U:O

—25 —25 —25 —25

5 U+ (5 A4 1)Ut (Grat 1) U+ (Frad+as g e 1)U =0

3 3 3 28

3 =3/25 a = 3/25 s T or T Tl =0

—25 28

et U =0 = Uy =5 50U
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2
um:aut—l—bux—zu—l—d

A=1 B=C=0 = A =0 parabolic

dx
i 0 already in canonical form since u,, is the only 2"¢ order term
u = vez”
5 b x
Uy = Vg€27 + 5 ve?

2
b b b
Ugy = Ugg€2® + buge2® + Zve2x

by
Uy = V€2

b? b b? b
= Um—i—bvx—l—zvzavt—kb Ux—i—av —Zv—l—de 27

Since v, and v terms cancel out we have:

_b
Upe = aU; + de 27
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CHAPTER 3
3 Method of Characteristics

3.1 Advection Equation (first order wave equation)

Problems
1. Solve
ou_ v,
ot or
subject to

w(z,0) =sinz

2. Solve using the method of characteristics

ou  Ou o,

a = + Co-=e subject to u(z,0) = f(x)
0 0
b. 8_1: + xa—z =1 subject to u(x,0) = f(x)
0 0
c. (9_7: + Sta—z =u subject to u(z,0) = f(x)
ou ou
L =2 = ' =
d T o = ¢ subject to u(z,0) = cosx
ou  ,0u , -
e = —t = U subject to u(x,0) = 3e
3. Show that the characteristics of
ou ou
EA Wiy
ot * Y or
u(z,0) = f(z)
are straight lines.
4. Consider the problem
ou i ou 0
- Uu— =
ot Ox
1 x <0
u(r,0) = f(x)=¢ 1+7 0<z<L
2 L<x

Determine equations for the characteristics
Determine the solution u(x,t)

Sketch the characteristic curves.

Sketch the solution u(x,t) for fixed ¢.

/e o
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1. The PDE can be rewrriten as a system of two ODEs

dx
— = -3
dt
dt

The solution of the first gives the characteristic curve
T + 3t = xg
and the second gives
w(z(t),t) = w(x(0),0) = sinzg = sin(z + 3t)

w(z,t) = sin(z + 3t)

2.a. The ODEs in this case are

dt
du 9
aw €

Solve the characteristic equation
T = ct + x
Now solve the second ODE. To do that we have to plug in for x

du
dt

2(zo + ct) 2z ,2ct

= € = € €

1
t — QLU() 2ct
u(z,t) = e 20 € + K

The constant of integration can be found from the initial condition

1
f(zo) = u(x,0) = 2—629”0 + K

c
Therefore 1
K = f(.ﬁlj‘o) — %6210
Plug this K in the solution
u(z,t) = i€2xo+2ct + f(xo) — i62950
’ 2c 0 2c

1 1
Now substitute for 2 from the characteristic curve |u(z,t) = — e** + f(z — ct) — % 2@ —et)
c
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2.b. The ODEs in this case are

dr
E =T
dt
Solve the characteristic equation
Inx =1t + Inxzg or r = xo€

The solution of the second ODE is
u=t+ K and the constant is f(zo)

u(z,t) =t + f(xo)

Substitute g from the characteristic curve |u(x,t) =t + f (x e_t)

2.c¢. The ODEs in this case are

dx
— =3t
dt
du
— = Uu
dt
Solve the characteristic equation
3 o
= 2t
x 5 + X
The second ODE can be written as
du
— =dt
u

Thus the solution of the second ODE is
Inu =t + InK and the constant is f(zo)

u(x,t) = f(zo) €

Substitute =y from the characteristic curve |u(z,t) = f (x - = t2> e’
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2.d. The ODEs in this case are

dx
= — _9
dt
du
R 62:v
dt
Solve the characteristic equation
r = —2t + xg

Now solve the second ODE. To do that we have to plug in for z

2xg —4t

d_u — 62(:E0—2t) e

dt

= €

1
u(z,t) = e* (—16_4t> + K

The constant of integration can be found from the initial condition

1
cos(zg) = u(x,0) = — Zeho + K

Therefore ]
K = cos(zg) + Ze%o

Plug this K in the solution and substitute for xy from the characteristic curve

1 1
u(z,t) = — ZeQ(HQt) e 4+ cos(x + 2t) + : 2w +2)

1
u(z,t) = 162‘” (e4t - 1) + cos(z + 2t)

To check the answer, we differentiate

1
Uy = 562‘” (e4t - 1) — sin(z + 2t)

1
up = Zem (4 e4t) — 2sin(z + 2t)

Substitute in the PDE
1
uy — 2u, = e* e — 2sin(x 4 2t) — 2 {5 e (e‘“ — 1) — sin(z + Qt)}

= ¥t — 2sin(x 4 2t) — e 4+ €2 4 2sin(x + 2t)
= ¥ which is the right hand side of the PDE
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2.e. The ODEs in this case are

d_x = _¢2
dt
du
— = —U
dt
Solve the characteristic equation
t3
r=—-——+u
3 0
Now solve the second ODE. To do that we rewrite it as
du
— = —dt
U
Therefore the solution as in 2c¢
Inuy = —t + InK and the constant is 3e"0

Plug this K in the solution and substitute for xy from the characteristic curve

Inu(z,t) = In {3 e“éts} —t

u(z,t) = 3 tat gt

To check the answer, we differentiate
uy = 3e* (t2 — 1) 3t —t

143 _
Uy, = 3e*est 7t

Substitute in the PDE
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3. The ODEs in this case are p
T

9
a Y
dt

Since the first ODE contains x, t and u, we solve the second ODE first

u(z,t) = u(z(0),0) = f((0))
Plug this u in the first ODE, we get

dx
X 20

The solution is
r = x0 + 2tf(70)

These are characteristics lines all with slope

1
2f(x0)

Note that the characteristic through z(0) will have a different slope than the one through
x9(0). That is the straight line are NOT parallel.

62



4. The ODEs in this case are

dx
E—Qu
du_
E O
with
1 z <0
u(x,())f(x){ 1+7 0<z<L
2 L<zx

a. Since the first ODE contains z, t and u, we solve the second ODE first
u(z,t) = u(x(0),0) = f(x(0))
Plug this u in the first ODE, we get

dx
= 2f(a(0))

The solution is
x =z + 2tf(x0)

25

Figure 12: Characteristics for problem 4
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b. For zy < 0 then f(xy) = 1 and the solution is

u(z,t) =1 onxr = xg + 2t

or
u(z,t) =1 onx < 2t
For zyp > L then f(zo) = 2 and the solution is
u(z,t) = 2 onx >4t + L
For 0 < zy < L then f(xy) = 1 4+ x¢/L and the solution is
u(x,t):1+% onx:2t(1+%>+xo
That is

x — 2t
= L
SV

Thus the solution on this interval is

(2.1) 1+x—2t 204+ L +x — 2t r+ L
ux g _— g
’ 2t + L 2t + L 2t + L

Notice that v is continuous.

19r

181

171

1.6

15 u=(x+L)/(2t+L)

1.4r

131

1.2

11pu=1

I I I I I
-5 0 5 10 15 20 25

x=2t X=4t+L

Figure 13: Solution for problem 4
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3.2 Quasilinear Equations
3.2.1 The Case S =0, ¢ = c(u)

Problems

1. Solve the following

0
a. 8—2; =0 subject to u(x,0) = g(x)
ou .
b. 5 = —3zu subject to u(x,0) = g(x)
2. Solve
ou
— =Uu
ot
subject to
u(z,t) =14 cosx along z+2t=0
3. Let
Ou + Ou 0 constant
—+c—= ¢ = constan
ot Ox

a. Solve the equation subject to u(z,0) =sinz
b. If ¢ > 0, determine u(x,t) for z > 0 and ¢ > 0 where

u(z,0) = f(x) forx >0
u(0,t) = g(t) fort >0

4. Solve the following linear equations subject to u(z,0) = f(x)

a. %jtc%:e’“b. %—Fta—uzlﬁ
ot ox ot ox
¢ %—ﬂ% —u
ot oxr
d. @—l—x%:t
ot ox
ou ou

5. Determine the parametric representation of the solution satisfying u(z,0) = f(z),

Ou  ,0u

5 u%:ZSu
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ou
b. — 4+
ot +t7u

6. Solve

subject to

ou
— = —u

or

@ + tQU% =
ot or

u(z,0) = .

66
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1.
a. Integrate the PDE assuming z fixed, we get

u(z,t) = K(x)

Since dz/dt = 0 we have © = x( and thus

u(z,t) = u(w,0) = K(x0) = g(w0) = g()
u(z,t) = g(x)

b. For a fixed x, we can integrate the PDE with respect to ¢

d
o gat K(x)
u

Inu — Inc(z) = —3at

u(z,t) = ce

Using the initial condition
u(w,t) = f(z) e

67



2. The set of ODEs are

dx du
— =0 d — =
dt wmey T
The characteristics are x = constant and the ODE for u can be written
d
M
U
Thus
u(x,t) = k(z)e
Onzx = —2tor xz + 2t = 0 we have

1+ cosz = k(x)e|pmo = k(z)e 2
Thus the constant of integration is
k(z) = e? (1 + cosx)
Plug this in the solution u we get
u(r,t) = (1 + cosx) ez
Another way of getting the solution is by a rotation so that the line x 4+ 2t = 0 becomes
horizontal. Call that axis &, the line perpendicular to it is given by ¢t — 2x = 0, which we

call 7.
So here is the transformation

E=x+2t

n =1t-—2x.

The PDE becomes: | |
Ug + iun = iu

and the intial condition is:

5

2 2
nlgzo = 1+cos=n

u(n,sz)zl%—cosé E

Rewrite this as a system of two first order ODEs,

dn 1
s~ 2
n(0) = «a
du(n(€),§) _ 1
de¢ 2
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2
u(n(0),0) = 1+ cos 0
The solution of the first ODE, gives the characteristics in the transformed domain:
1
n = 55 ta

The solution of the second ODE:

Le
u(n(€),€) = Ke?

Using the initial condition

2
1+COSgOz =K

Thus
1

u(n(§),§) = (1+cos %a)eQ

1
But a =n— 55 thus
1
2 1. 3¢
u(n(€),§) = (L+cos = (n — 5€))e?
Now substitute back:
Le_ Ly
— = —x
2 2
1 1 5
7]—55 = (t—2x)—(§x—|—t) =57
Thus
1
-+t
u(x,t) = (14 cosx)e2 :

69



3. a. The set of ODEs to solve is
dx du

= C —:0

dt dt

The characteristics are:
r = x9 + ct

The solution of the second ODE is
u(z,t) = constant = u(zy,0) = sinz
Substitute for zy, we get

u(z,t) = sin(z — ct)

b. For x > ct the solution is u(z,t) = f(z — ct)

But f(z) is defined only for positive values of the independent variable z, therefore
f(z — ct) cannot be used for z < ct.

In this case (r < ct) we must use the condition

u(0,1) = g(t)
The characteristics for which zy < 0 is given by x = xy + ¢t and it passes through the
point (0,%) (see figure). Thus x = c(t — o) and u(0,tg) = g(to) = g (t - 5)

C

t

x-ct<0 x-ct=0

2F u(0,t)=g(t)

~ct>0

u(x,0)=f(x)

-1t

) I I I I
-4 -2 0 2 4 6 8

Figure 14: Domain and characteristics for problem 3b

The solution is therefore given by

flz —ct) forx—ct > 0

u(z,t) = g(t—%) forz—ct <0
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4.a. The set of ODEs is
dx du _ay
dt dt
The solution of the first is
T = x5 + ct
Substituting x in the second ODE
% — o~ 3(@otet)

Now integrate
1
u(z,t) = K + e 30— g3

—3c
At t =0 we get
f(z0) = u(z0,0) = K + e 3% —
—3c
Therefore the constant of integration K is
K = flao) + e -
0 3¢
Substitute this K in the solution
1 1
t) = —3z0 — _ ,—3xz0 — ,—3ct
u(z,t) = f(zo) + e 2 T ¢ gt

Recall that xg = x — ct thus

1 1
u(z,t) = f(r—ct) + §6_3($_Ct) - §€_3$

b. The set of ODEs is

do _ du
dt dt
The solution of the first is
T =z + %tQ

Now integrate the second ODE
u(z,t) = 5t + K

At t = 0 the solution is
u(zo,0) = f(zg) = K plug t = 0 in the solution u

Thus when substituting for x in the solution

u(z,t) = 5t + f (x — %t2>
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c. The set of ODEs is

d_x = —¢t? d_u =u
dt dt
The solution of the first is
T = Ty — 1153
3

Now integrate the second ODE
Inu(z,t) = =t + In K
or
u(r,t) = Ke™*
At t = 0 the solution is

u(zo,0) = f(zg) = K plug t = 0 in the solution u

Thus when substituting for zy in the solution

u(x,t) = e ' f <x + %t3>

d. The set of ODEs is
dx du y
— = I =

dt dt
The solution of the first is
Inz = Inxy + ¢

or
r = xo¢€
Now integrate the second ODE
1
u(z,t) = 5152 + K

At t = 0 the solution is
u(zo,0) = f(zg) = K plug t = 0 in the solution u

Thus when substituting for zy in the solution

u(z,t) = %t2 + f(xe_t)
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e. The set of ODEs is
dr du
at a7
The solution of the first is
Inz = Inxy + ¢

or
T = xp€
Now substitute z in the second ODE
du '
— = xg8€
dt 0

and integrate it
u(x,t) = e'xg + K

At t = 0 the solution is
u(zo,0) = f(xg) = K + plug ¢ = 0 in the solution u
Thus when substituting K in u
u(z,t) = xoe' + f(xg) — o
Now substitute for zy in the solution

u(x,t) =z + f(a:e*t) —ze
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5.a. The set of ODEs is

dz 9 du
ar _ T _ 3
a at ~

The solution of the first ODE requires the yet unknown w thus we tackle the second ODE

d
M _ 3

u
Now integrate this
Inu(z,t) = 3t + K or u(z,t) = Ce*
At t = 0 the solution is
u(zo,0) = f(xg) = C

Thus
u(z,t) = f(zo)e™

Now substitute this solution in the characteristic equation (first ODE)

dx

= @) = — ()

Integrating
For t = 0 we get

Thus

and the characteristics are

1

2 6t 1 2
x:—é(f(xo)) e +$0+6(f(1’0))

“Solve” this for xy and subsitute for u. The quote is because one can only solve this for
special cases of the function f(x).

The implicit solution is given by
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b. The set of ODEs is
dr_ oo du_
dt dt

The solution of the first ODE requires the yet unknown w thus we tackle the second ODE

du
u

= —dt

Now integrate this
nu(z,t) = -t + K or u(z,t) = Ce™*
At t = 0 the solution is
u(w,0) = f(w) = C

Thus
U(.CE,t) = f(xO) eit

Now substitute this solution in the characteristic equation (first ODE)

dx

7 t* f(xo) e

/dx = f(xo) /t2 et dt

Integrate and continue as in part a of this problem

or

r = f(xo) [—t2e_t —2te™" —2e7" + C’}
For t = 0 we get

Thus
Cf(.il?o) = Xy + Qf(.ilfo)

and the characteristics are
r = f(x) [—tQ — 2t — 2} et + zg + 2 f(wo)

“Solve” this for xy and subsitute for u. The quote is because one can only solve this for
special cases of the function f(x).

U(.T,t) = f(x0> e_t
The implicit solution is given by
x = — fxo) [t? + 2t + 2] e + xg + 2 f(x0)
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6. The set of ODEs is
d_x = t?u % =5
dt dt

The solution of the first ODE requires the yet unknown w thus we tackle the second ODE
du = 5dt

Now integrate this
u(z,t) = 5t + K

At t = 0 the solution is
u(ro,0) = f(xg) = xp = K

Thus
u(z,t) = xg + 5t

Now substitute this solution in the characteristic equation (first ODE)

dx

— =5 t?
dt + Zo
Integrate
> t*+ L t3ry + C
r = - ~t°x
4 377"

For t = 0 we get

Thus

and the characteristics are

Solve this for zq

x —
The solution is then given by |u(z,t) = 5t + ?4
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3.2.3 Fan-like Characteristics
3.2.4 Shock Waves

Problems

1. Consider Burgers’ equation

dp 20 | dp  D%p
+ Umaz [1 ] o I/am2

ot

pmaac

Suppose that a solution exists as a density wave moving without change of shape at a velocity

V, p(x,t) = f(x — Vi).

a. What ordinary differential equation is satisfied by f

b. Show that the velocity of wave propagation, V', is the same as the shock velocity
separating p = p; from p = ps (occuring if v = 0).

2. Solve 5 5
P 20p
“r L _0
ot T ox
subject to
4 <0
p(l’,O)—{ 3 .CE>0
3. Solve 5 5
in in
— +4du— =0
o T Mo
subject to

4. Solve the above equation subject to

2 r<-—1
u(x,O)z{B > —1

5. Solve the quasilinear equation

ou ou 0
o Mor

subject to
2 x <2

u(x,O):{g x> 2

6. Solve the quasilinear equation

%—l—u%—o
ot or
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subject to

0 <0
u(z,0)=¢ =z 0<z<1
1 1<x

7. Solve the inviscid Burgers’ equation
ug + uu, = 0
2 for z <0
u(z,0) =< 1 for 0 <z <1
0 for = > 1

Note that two shocks start at ¢ = 0, and eventually intersect to create a third shock.

Find the solution for all time (analytically), and graphically display your solution, labeling
all appropriate bounding curves.
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1. a. Since

plz,t) = flz = Vi)

we have (using the chain rule)

pr = fl(z = Vt) - (=V)

pe = flla =Vt) -1

pae = f'(x = V1)

Substituting these derivatives in the PDE we have
2f(x — Vi)

pmax

—V f'(x — Vt) + Unas (1 — )f'(a: — Vi) =vf'(z — Vi)
This is a second order ODE for f.
b. For the case v = 0 the ODE becomes

—Vf/(.T - Vt) T Umaa <1 - Qf(x — Vt)

pmax

) fl(x —Vt) =0
Integrate (recall that the integral of 2f f' is f?)
—V f(x — Vt) + tnas (f(x - Vt) —

To find the constant, we use the following
As x — 00, p — py and as x — —o0, p — p1, then

2
_Vp2+umax <P2— 2 ) =C

pmax

2
_Vpl + Umaz <p1 - L ) =C

pmaa)
Subtract ) )
_ P o M _
V (pl P2) + Umaz | P2 Umaz | P1 - O
Pmaz Pmaz
Solve for V , ,
V - Umaz (pQ - p::jw) — Umaz (pl - pz;r)
P2 — P1
This can be written as u
V = Umaz — L (Pl + P2)
Note that (1) is
y_

o]

2
p
qd = Umaz (P - )
Pmaz

Thus V' given in (1) is exactly the shock speed.

since
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2. The set of ODEs is

dx 9 dp
@r Sl
it ~ 7 dt
The solution of the first ODE requires the yet unknown p thus we tackle the second ODE
dp =0
Now integrate this
plx,t) = K

At t = 0 the solution is

4 <0
p(xo’o)_K_{?) x>0

Thus
p(r,t) = p(xo,0)

Now substitute this solution in the characteristic equation (first ODE)

dx
- p*(20,0)

Integrate
r = p*(z0,0)t + C

For t = 0 we get
Zo :O+C
Thus
C:.CITO

and the characteristics are
T = pQ(xo,O)t + g

For zy < 0 then p(xp,0) = 4 and the characteristic is then given by © = xy + 16t
Therefore for o = = — 16t < 0 the solution is p = 4.

For xy > 0 then p(xy,0) = 3 and the characteristic is then given by z = xy + 9¢
Therefore for zp = © — 9t < 0 the solution is p = 3.

Notice that there is a shock (since the value of p is decreasing with increasing x). The
shock characteristc is given by

dr, _3-4°—35-3°  3(64—27) 37
dt 4-3 1 3

The solution of this ODE is

37
Ty = ?t + z4(0)

x5(0) is where the shock starts, i.e. the discontinuity at time ¢ = 0.
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0.8

0.6

p=4 X, =(37/3)t

0.4

0.2

-0.2 I I I I I I I I I
-2 -1 0 1 2 3 4 5 6 7 8

Figure 15: Characteristics for problem 2

Thus z,(0) = 0 and the shock characteristic is

x—3—7t
S 3

See figure for the characteristic curves including the shock’s. The solution in region I above
the shock chracteristic is p = 4 and below (region II) is p = 3.
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up + 4duu, = 0

3 r <1
2 z>1

Shock again

The shock characteristic is obtained by solving:

dt 3—2

dv, 2-32-2.22
i S T

zs = 10t + x4(0)
=1

z, = 10t + 1

Now we solve the ODE for u:

du

pri 0 = wu(z, t) = u(x, 0)

The ODE for z is:

r = 4u(zg, 0))t + o

— = 4u = 4u(zy, 0)

or uy + (2u?), = 0

away from shock

If To < 1 ro = x — 12t = r <1+ 12t

To < 1 To = ¢ — 8t = z > 14+ 8t
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4.

Solve
us + duu, = 0
2 < —1
u(z, 0) =
3 x> —1
d
d—q;: =0 u(z, t) = u(xg, 0)
d
d—jf = 4u = 4u(xo, 0)
dxr = 4u (zo, 0)dt
x = 4u(zg, 0)t + xo
For zy < —1 r = 8t + xg = r — 8 < —1
g > —1 r = 12t + xg = r — 12t > —1

2 r <8 -1
u(z, t) =¢ 7 8t —1<x< 12t — 1

3 x> 12t -1

r = 4dut + o

=—1 discontinuity
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fan

For
For

xr =

3

291

2.8

271

2.6

25F u=(x+1)/(4t)

2.4

231

2.2

2.1ru=2

2

I I I I I I I I I
-5 0 5 10 15 20 25 30 35 40

x=t-1 x=12t-1

Figure 16: Solution for 4
ug + uu, = 0

2 x <2

3 = > 2

T
To < 2 T = 2t + xo = T — 2t < 2
Tg > 2 z = 3t + x¢ = r — 3t > 2
tu(zg, 0) + zo at discontinuity zq = 2

we get v = tu + 2
T —2
t

u =

84
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291

2.8

271

2.6

251

2.4

231

2.2

21r

u=(x-2)/t

0.9

0.8F

0.7

0.6

0.4-

0.3

0.2

0.1

. . . .
0 5 10 15 20 25
X=2t42 x=3t+2

Figure 17: Solution for 5

I I I
-2 -1 0 1 2 3
X

Figure 18: Sketch of initial solution

0 <0
u(z,0) =¢ z 0<z <1
1 z>1



0.9r

0.8

0.7

0.6

0.5F

0.4r

0.3F

0.2r

0.1r

u=x/(1+t)

.
0 5 10
X=t+1

Figure 19: Solution for 6

d
d—f u = u(zg, 0) = x = tu(z, 0) + xo
For xy < 0 r=1t-04 x = T = Xy
0 <z <1 x = txg + x9 = r = x9(1 + 1)
1 <z r =1+ xg = =1+ x

Basically the interval [0, 1] is stretched in time to [0, 1+ t].
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ug + uu, = 0

2 for x <0
u(z,0) =< 1 for 0 <z <1

0 for z > 1

First find the shock characteristic for those with speed u =2 and u =1

1,2 1.5 5 3
d = 5 = 5@ -1 =3
ul =2-1=1
Thus
dr, §
a2
and the characteristic through x = 0 is then
Ty = §t
)

Similarly for the shock characteristic for those with speed ©v =1 and u =0

o = 5| = 507-0%) = 3

o 2 2
u =1-0=1
Thus
dry 1
a2
and the characteristic through x = 1 is then
1t + 1
Ty = =
2

Now these two shock charateristic going to intersect. The point of intersection is found
by equating z in both, i.e.

1t+1—3t
2 92

3
The solution is t = 1 and z, = 7 Now the speeds are u = 2 and u =0
2 Lo 2
o = 5| = 5@ -0 =2
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2.5

15F

0.5F

Thus

dx,

dt
and the characteristic is then
r, =t + C.

3
To find C', we substitute the point of intersection t = 1 and z, = 3 Thus

3
- =14+C
5 +
or .
C = -
2
The third shock characteristic is then
t -+ L
Ty = —.
2

The shock characteristics and the solutions in each domain are given in the figure above.
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3.3 Second Order Wave Equation
3.3.1 Infinite Domain

Problems

1. Suppose that
u(z,t) = F(x — ct).

Evaluate
ou
a. a(w, 0)
ou
b. %(0, t)

2. The general solution of the one dimensional wave equation
Upp — 4y =0

is given by
u(z,t) = F(x —2t) + G(x + 2t).

Find the solution subject to the initial conditions
u(z,0) = cosz —00 < x < 00,

ut(z,0) =0 — 00 < x < 00.

3. In section 3.1, we suggest that the wave equation can be written as a system of two first
order PDEs. Show how to solve
Uy — Cligy = 0

using that idea.
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la.
u(z, t) = F(x — ct)

Use the chain rule:

du  dF(z — ct)
ot Cd(x—ct)
att = 0
ou  dF(z)
ot dx
1b.
Ou  dF(x — ct)
ox  d(x — ct)
atx =0

du _ dF(=ct)  1dF(=a)

=" — F'(—
oz d(—ct) c dt (=)

T

differentiation with respect to argument
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2. wu(z,t)=F(x —2t) + G(x + 2t)
u(z, 0) = cos x
ug(x, t) =0
u(z,0) = F(z) + G(xz) = cos x (*)
ur (x, t) = —2F (x — 2t) + 2G" (v + 2t)
= u (r,0) = —2F' (z) + 2G" () = 0
Integrate = — F () + G (z) = constant = k (#)

solve the 2 equations (*) and (#)

2G(z) = cosz + k

G(z) = 5 cosz + 1k

2F(z) = cosz — k

F(z) = § cosz — 1k
We need F(z — 2t) = F(z — 2t) = $cos(x — 2t) — 3k
G(z + 2t) = cos(z + 2t) + 3k

= u(z, t) = 3 cos(z — 2t) + 3 cos(z + 2t) — 3k + 3k

u(z, t) = % {cos (x — 2t) + cos(z + 2t)}
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3. The wave equation

2
Uy — CUgy = 0

can be written as a system of two first order PDEs

ov ov

E—C%ZO

and
ou ou

o " o
Solving the first for v, by rewriting it as a system of ODEs

= .

dv
dt

dx

dt

=0

= —c
The characteristic equation is solved

r = —ct + xg

and then
v(z,t) = v(xg,0) = V(x+ ct)

where V is the initial solution for v. Now use this solution in the second PDE rewritten as

a system of ODEs
d
d—?: = V(z + ct)
dx
— = C
dt
The characteristic equation is solved

T = ct + x

and then J
d—?: = V(z +ct) = V(xg+ 2ct)

Integrating
t
u(zo, t) = / V(zo + 2¢r)dT + K(20)
0

Change variables
z = X+ 2cT

then
dz = 2cdr
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The limits of integration become xy and xy + 2c¢t. Thus the solution
zo+2ct ]
m%w:/ S V(2)dzr + K (o)
ts) 20
But zg = z — ¢t

ztct ]
u(z,t) = /x Q_CV(Z)dZ + K(z —ct)

—ct

Now break the integral using the point zero.

x—ct ]_ x+ct ]_
u@ﬂ:K@%ﬁ—A %V@m+4 o Viz)dz

The first two terms give a function of x — ¢t and the last term is a function of x + ct, exactly
as we expect from D’Alembert solution.
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3.3.2 Semi-infinite String

3.3.3 Semi-infinite String with a Free End

Problems

1. Solve by the method of characteristics

— = = >0
o~ Copr T ’
subject to
u(z,0) =
ou
—(2,0)=0
ot (00 =0,
u(0,t) = h(t).
2. Solve 5 o
u 50U
@ — C @ = 0, z <0
subject to
u(z,0) = sinz, x <0
0
a—?(:z:,()) =0, =x<0
u(0,t) = e, t>0.
3. a. Solve 52 o
u  ,0%u
ﬁ — C @ = O, O<r<o
subject to
0 0<z<?2
u(z,0)=4¢ 1 2<x<3
0 3<zx
ou
—(2,0)=0
o (00 =0,
ou
—(0,t) =0
20,1

b. Suppose u is continuous at x =t = 0, sketch the solution at various times.

4. Solve
Pu 0

— t
ot? ¢ 0r? >0

=0, x>0,

subject to
u(z,0) =0,
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ou
E(l’, O) = 0,

ou
a—x(o,t) = h(t).

5. Give the domain of influence in the case of semi-infinite string.
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1.

x—Ct<0

- 2r u(0,H=h(t)

P(x,t)
x—ct>0
D(0,t - x /c)

u(x,0)=0 and u, (x,0)=0
. . .

C(x—ct,0) B(ct-x,0) A(x+ct,0)

I I I I I
-5 -4 -3 -2 -1 0 1 2 3 4
X

Figure 21: Domain for problem 1

Uy — Uy = 0
u(z, 0) = 0
u(z, 0) = 0
u(0, t) = h(t)

Solution u(z, t) = Flx — ct) + Gz + ct)

)
F@) = 5 /@) = o [ gtryr
#) 1

Gl&) = 5 (&) + 5

5 /O Cg(r)dr
since both f(z), g(z) are zero.
Thus for z — ¢t > 0 the solution is zero
(No influence of boundary at x = 0)
Forz —ct <0 u(0, t) = h(t)
Y
F(—ct) + G(ct) = h(t)

u(z, t) = Flx — ct) + Gz + ct)
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but argument of F is negative and thus we cannot use (*), instead
F(—ct) = h(t) — G(ct)
or F'(z) = h(=£) — G(—z) forz < 0
Fla — ct) = h(~55%) — G(~(z ~ o)
= h(t = %) = G(ct — z)
u(z, t) = Flx — ct) + Gz + ct)

= h(t —%) = G(ct — ) + G(z + ct)

Zero Zero

since the arguments are positive and (#) is valid
= wu(z,t) =h(t—-2) for 0<az<ct
C

u(z,t) =0 for xz —ct >0
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2.

x+ct>0
- 2f u(0,t)=en(-t)

x+Ct<0

u(x,0)=sin x and u, (x,0)=0

-1 I I I I I I I I
-5 -4 -3 -2 -1 0 1 2 3 4
X

Figure 22: Domain for problem 2

Uy — Uy = 0 x <0
u(z, 0) = sin x r <0
u(z, 0) = 0 r <0

u(0,t) = et t>0
u(z, t) = Flx — ct) + Gz + ct)
s sin

since f =sinz, g =0
sin x

%
From boundary condition

uw(0,t) = F(—ct) + G(ct) = e*

If x + ¢t < 0 no influence of boundary at z = 0

= u(z, t) = $sin(z — ct) + 5 sin(z + t)

= sin x cos ct

after. some trigonometric manipulation
If x + ¢t > 0 then the argument of G is positive and thus
G(ct) = et — F(—ct)
or G(z) = e#° — F(—2)

_xztct

= Gx+ct)=e"< — F(—(z+ ct))
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Therefore:

u(z, t) = F(z — ct) + G(x + ct)

_xztct

=F(x —ct)+ e < — F(—x — ct)

= S sin(z — ct) + e — s sin(—xz — ct)
(S —
— sin (z + ct)
1 1 st
=3 sin (z — ct) — 5 sin (z 4 ct) +e "
cos ct sin x
sin x cos ct

= u(x, t) =

. _ztct
sinx cosct + e
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3a. Uy = €Uy 0 <z < o0

uz(0,t) =0
0 0<o <2
u(z,0) =¢ 1 2<2x<3
0 z>3
ug(z, 0) = 0

u(z, t) = Flx — ct) + Gz + ct)

F) = 5 ) = 5 [ o©de =51 ¢=0 23>0
G@) = 5 @) + 5 [ 9€de=5f@)  g=0 23>0
u(, 1) = flx + ct) + f(z — ct) v ot

2 )
uz (0, t) = F'(—ct) + G'(ct) = 0
=  F'(—ct) = —G'(ct)
F'(=2) = =G'(2)

Integrate
—F(—2) = -G(>) + K

F(-2) = G(z2) — K

= Flx—c)=—-G(t—2) - K r —ct <0

=sf(dt—2) — K x —ct <0

= u(z,t) =Lif(x+ct)+ 5flct—2)— K
To find K we look at = =0,t =0 u(0,0) = 0 from initial condition
but u(0,0) = 5 f(0) + 3 f(0) — K =  f(0) — K
|
=0 from above
= K=0

flz + ct) + f(et — x)
2

= u(zr, t) =
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x-ct<Q

x-ct>0

Figure 23: Domain of influence for problem 3

3b.
t —ct
foxd) tfaet)
u(z, t) =
flx + ct) + f(ct — x) e ot
2
where

1 Region I

u(z,t) =49 =  Region II

0 otherwise

In order to find the regions I and II mentioned above, we use the idea of domain of
influence. Sketch both characteristics from the end points of the interval (2,3) and remember
that when the characteristic curve (line in this case) reaches the t axis, it will be reflected.

As can be seen in the figure, the only region where the solution is 1 is the two triangular
regions. Within the three strips (not including the above mentioned triangles), the solution

1
is 3 and for the rest, the solution is zero.
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Xx—Ct<0

u, (0,)=h(t) x—ct>0

u(x,0)=0 and u, (x,0)=0

Figure 24: Domain for problem 4

4. Ut — 02 Uypye = 0
general solution

u(z, t) = Flx — ct) + Gz + ct)
=0

For x — ¢t >0 u(z, t) since u = u; = 0 on the boundary.

For x — ¢t < 0 we get the influence of the boundary condition

g (0, 1) = h(t)

Differentiate the general solution:

dF(z —c dG(x+c
up (2, 1) = Fl(x — ct) - 1+ G'w + cof) - 1 = S=d) 4 €0

chain rule
prime means derivative with respect to argument

Asxz = 0:

dF(—c dG(c
h(t) = up(0, t) = G 4 ) — _LIECA) o
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Integrate

Pl + LG+ L FO =2 60) = [Latryan

since f = g =0

=0 =0
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5. For the infinite string the domain of influence is a wedge with vertex at the point of
interest (x,0). For the semi infinite string, the left characteristic is reflected by the vertical
t axis and one obtains a strip, with one along a characteristic (x + ¢t = C') reaching the ¢
axis and the other two sides are from the other family of characteristcs (x — ¢t = K).
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CHAPTER 4

4 Separation of Variables-Homogeneous Equations

4.1 Parabolic equation in one dimension

4.2 Other Homogeneous Boundary Conditions

Problems
1. Consider the differential equation
X"(z) + XX (z) =0

Determine the eigenvalues A (assumed real) subject to
a. X(0)=X(m)=0
b. X'(0) = X'(L) =0
c. X(0)=X'(L)=0
d. X'(0)=X(L)=0
e. X(0)=0and X'(L)+ X(L)=0
Analyze the cases A > 0, A =0 and A\ < 0.
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X"+ AX =0
X(0) = 0
X(m) =0

Try €. As we know from ODEs, this leads to the characteristic equation for r

4+ A=0

Or
r=+v-\

We now consider three cases depending on the sign of A
Case 1: A < 0

In this case 7 is the square root of a positive number and thus we have two real roots. In
this case the solution is a linear combination of two real exponentials

X = AV 4 BV

It is well known that the solution can also be written as a combination of hyperbolic sine
and cosine, i.e.

X = Ascoshv—A\x + Bysinh v —A\x

The other two forms are may be less known, but easily proven. The solution can be written
as a shifted hyperbolic cosine (sine). The proof is straight forward by using the formula for
cosh(a + b) (sinh(a + b))

X = Ascosh (\/—_/\x + Bg)

Or
X = A4 sinh (\/——)\ZE + B4)

Which form to use, depends on the boundary conditions. Recall that the hypebolic sine
vanishes ONLY at x = 0 and the hyperbolic cosine is always positive. If we use the last form
of the general solution then we immediately find that B, = 0 is a result of the first boundary
condition and clearly to satisfy the second boundary condition we must have Ay = 0 (recall
sinhz = 0 only for z = 0 and the second boundary condition reads A,sinhv/—A7 = 0,
thus the coefficient A4 must vanish).

Any other form will yields the same trivial solution, may be with more work!!!

Case 2: A =0
In this case we have a double root » = 0 and as we know from ODEs the solution is

X =Ax + B
The boundary condition at zero yields

X(0) =B =0



and the second condition
X(m) =Anr =0

This implies that A = 0 and therefore we again have a trivial solution.

Case 3: A > 0
In this case the two roots are imaginary

r = 4ivV
Thus the solution is a combination of sine and cosine
X = A, cosVAz + BysinVz

Substitute the boundary condition at zero

Thus A; = 0 and the solution is
X = BysinVz

Now use the condition at 7
X(m) = BysinVAr = 0

If we take B; = 0, we get a trivial solution, but we have another choice, namely
sin V1 = 0

This implies that the argument of the sine function is a multiple of 7

\/)\7”7?:717? n=12...

Notice that since A > 0 we must have n > 0. Thus

\/)\7”:71 n=12...

A, = n? n=12...

Or

The solution is then depending on n, and obtained by substituting for A,
X, (x) = sinnx

Note that we ignored the constant B; since the eigenfunctions are determined up to a mul-
tiplicative constant. (We will see later that the constant will be incorporated with that of
the linear combination used to get the solution for the PDE)
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1.b.

X"+ AX =0
X'(0) = 0
X'(L) =0

Try €. As we know from ODEs, this leads to the characteristic equation for r

4+ A=0
Or
r = +v-X\
We now consider three cases depending on the sign of A
Case 1: A < 0

In this case 7 is the square root of a positive number and thus we have two real roots. In
this case the solution is a linear combination of two real exponentials

X = Ale‘/__)‘x + Ble_‘/j‘“”

It is well known that the solution can also be written as a combination of hyperbolic sine
and cosine, i.e.

X = Ascoshv—A\x + Bysinhv—A\x

The other two forms are may be less known, but easily proven. The solution can be written
as a shifted hyperbolic cosine (sine). The proof is straight forward by using the formula for
cosh(a + b) (sinh(a + b))

X = Ajcosh (\/——)\x + Bg)
Or

X = A4 sinh (\/——)\ZE + B4)

Which form to use, depends on the boundary conditions. Recall that the hypebolic sine
vanishes ONLY at x = 0 and the hyperbolic cosine is always positive. If we use the following
form of the general solution

X = Ajcosh (\/—)\x + Bg)
then the derivative X’ wil be
X' = V/—=M\Assinh (\/ -\ + B3)

The first boundary condition X'(0) = yields B3 = 0 and clearly to satisfy the second

boundary condition we must have A3 = 0 (recall sinhz = 0 only for z = 0 and the second

boundary condition reads v/—AAssinh /=ML = 0, thus the coefficient A5 must vanish).
Any other form will yields the same trivial solution, may be with more work!!!
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Case 2: A =0
In this case we have a double root » = 0 and as we know from ODEs the solution is

X =Ax + B
The boundary condition at zero yields

X'(0)=A=0
and the second condition

X (L)y=A=0

This implies that A = 0 and therefore we have no restriction on B. Thus in this case the
solution is a constant and we take
X(z) =1

Case 3: A > 0
In this case the two roots are imaginary

r = 4iv
Thus the solution is a combination of sine and cosine
X = A, cosVAz + BysinVz

Differentiate

X' = —VAA;sin VAz + VAB; cos Vz

Substitute the boundary condition at zero

X'(0) = VAB,
Thus B; = 0 and the solution is

X = A, cos Vo
Now use the condition at L

X'(L) = —VAA;sin VAL = 0
If we take A; = 0, we get a trivial solution, but we have another choice, namely
sin VAL = 0

This implies that the argument of the sine function is a multiple of 7

\/)TLL:mr n=12...

Notice that since A > 0 we must have n > 0. Thus

VA = ”% n=1,2,...

2
An:(%) n=1,2,...

The solution is then depending on n, and obtained by substituting A\,

Xn(x) = cos n%x

Or
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X"+ AX =0
X(0) =0
X'(L) =0

Try €. As we know from ODEs, this leads to the characteristic equation for r

4+ A=0
Or
r = +v-X\
We now consider three cases depending on the sign of A
Case 1: A < 0

In this case 7 is the square root of a positive number and thus we have two real roots. In
this case the solution is a linear combination of two real exponentials

X = Ale‘/__)‘x + Ble_‘/j‘“”

It is well known that the solution can also be written as a combination of hyperbolic sine
and cosine, i.e.

X = Ascoshv—A\x + Bysinhv—A\x

The other two forms are may be less known, but easily proven. The solution can be written
as a shifted hyperbolic cosine (sine). The proof is straight forward by using the formula for
cosh(a + b) (sinh(a + b))

X = Ajcosh (\/——)\x + Bg)

Or
X = A4 sinh (\/——)\ZE + B4)

Which form to use, depends on the boundary conditions. Recall that the hypebolic sine
vanishes ONLY at x = 0 and the hyperbolic cosine is always positive. If we use the following
form of the general solution

X = A,sinh (\/—)\x + 34)
then the derivative X’ wil be

X' = vV/—=\A, cosh (\/—_/\x + B4)

The first boundary condition X (0) = yields By = 0 and clearly to satisfy the second
boundary condition we must have Ay = 0 (recall cosh z is never zero thus the coefficient A,
must vanish).

Any other form will yields the same trivial solution, may be with more work!!!
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Case 2: A =0
In this case we have a double root » = 0 and as we know from ODEs the solution is

X =Axr + B
The boundary condition at zero yields
X(0)=B=0

and the second condition

X'(L)=A=0

This implies that B = A = 0 and therefore we have again a trivial solution.

Case 3: A > 0
In this case the two roots are imaginary

r = ii\/X
Thus the solution is a combination of sine and cosine
X = A, cosVAz + BysinVz

Differentiate

X' = —VAA;sin VAz + VAB; cos Vz

Substitute the boundary condition at zero

Thus A; = 0 and the solution is
X = Bj;sin Vz
Now use the condition at L
X'(L) = VABycos VAL = 0
If we take B; = 0, we get a trivial solution, but we have another choice, namely
cos VAL = 0

This implies that the argument of the cosine function is a multiple of 7 plus 7/2

1
\/)\nL:<n+§>7r n=0,1,2,...

Notice that since A > 0 we must have n > 0. Thus

VA = (n+3)w n=01,2...

L
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2

)\n:(m) n=0,1,2,...

L

The solution is then depending on n, and obtained by substituting A,

Xp(x) = sin Mz

L
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1.d.

X"+ AX =0
X'(0) = 0
X(L) =0

Try €. As we know from ODEs, this leads to the characteristic equation for r

4+ A=0
Or
r = +v-X\
We now consider three cases depending on the sign of A
Case 1: A < 0

In this case 7 is the square root of a positive number and thus we have two real roots. In
this case the solution is a linear combination of two real exponentials

X = Ale‘/__)‘x + Ble_‘/j‘“”

It is well known that the solution can also be written as a combination of hyperbolic sine
and cosine, i.e.

X = Ascoshv—A\x + Bysinhv—A\x

The other two forms are may be less known, but easily proven. The solution can be written
as a shifted hyperbolic cosine (sine). The proof is straight forward by using the formula for
cosh(a + b) (sinh(a + b))

X = Ajcosh (\/——)\x + Bg)

Or
X = A4 sinh (\/——)\ZE + B4)

Which form to use, depends on the boundary conditions. Recall that the hypebolic sine
vanishes ONLY at x = 0 and the hyperbolic cosine is always positive. If we use the following
form of the general solution

X = Ajcosh (\/—)\x + Bg)
then the derivative X’ wil be
X' = V/—=M\Assinh (\/ -\ + B3)

The first boundary condition X'(0) = yields B3 = 0 and clearly to satisfy the second
boundary condition we must have A3 = 0 (recall cosh z is never zero thus the coefficient A3
must vanish).

Any other form will yields the same trivial solution, may be with more work!!!
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Case 2: A =0
In this case we have a double root » = 0 and as we know from ODEs the solution is

X =Ax + B
The boundary condition at zero yields

X'0)=A=0
and the second condition

X(L)=B =0

This implies that B = A = 0 and therefore we have again a trivial solution.

Case 3: A > 0
In this case the two roots are imaginary

r o= ii\/X
Thus the solution is a combination of sine and cosine
X = A;cosVAr + Bysin vz

Differentiate

X' = =V A sinVaz + VAB; cos Vax

Substitute the boundary condition at zero

X'(0) = VAB,
Thus B; = 0 and the solution is

X = A, cos vV

Now use the condition at L
X(L) = Ajcos VAL = 0

If we take A; = 0, we get a trivial solution, but we have another choice, namely
cos VAL = 0

This implies that the argument of the cosine function is a multiple of 7 plus 7/2

1
\/)\nL:(n—i—i)ﬂ n=0,1,2,...

Notice that since A > 0 we must have n > 0. Thus

VA = (nt3) n=01,2,...

L
Or )
A 7(71 - %) i 0,1,2
n — I n=~u,1,4,...
The solution is then depending on n, and obtained by substituting A,
n+ )T
Xn(x) = cos %x
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X"+ AX =0
X(0) =0
X'(L) + X(L) = 0

Try e™. As we know from ODEs, this leads to the characteristic equation for r

4+ A=0

Or
r=+v-X\

We now consider three cases depending on the sign of A
Case 1: A < 0

In this case 7 is the square root of a positive number and thus we have two real roots. In
this case the solution is a linear combination of two real exponentials

X = AreV™ + BV

It is well known that the solution can also be written as a combination of hyperbolic sine
and cosine, i.e.

X = Ascoshv—A\x + Bysinh v —A\x

The other two forms are may be less known, but easily proven. The solution can be written
as a shifted hyperbolic cosine (sine). The proof is straight forward by using the formula for
cosh(a + b) (sinh(a + b))

X = Ascosh (\/—_/\x + Bg)

Or
X = Aysinh (\/—_)\x + B4)

Which form to use, depends on the boundary conditions. Recall that the hypebolic sine
vanishes ONLY at x = 0 and the hyperbolic cosine is always positive. If we use the following
form of the general solution

X = Asinh (\/——)\x + B4)
then the derivative X’ wil be
X' = v/=\A, cosh (\/—_/\x + B4)
The first boundary condition X (0) = 0 yields By = 0 and clearly to satisfy the second

boundary condition
V—=AAscoshv—AL = 0

we must have Ay = 0 (recall cosh z is never zero thus the coefficient A, must vanish).
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Any other form will yields the same trivial solution, may be with more work!!!

Case 2: A =0
In this case we have a double root r = 0 and as we know from ODEs the solution is

X =Ax + B
The boundary condition at zero yields
X(0)=B=0
and the second condition
X' (L) + X(L) = A+ AL =0

Or
A1+L) =0

This implies that B = A = 0 and therefore we have again a trivial solution.

Case 3: A > 0
In this case the two roots are imaginary

r = 4iv\
Thus the solution is a combination of sine and cosine
X = A, cosVAz + BysinVz

Differentiate

X' = —VAA;sin Vaz + VAB; cos Vz

Substitute the boundary condition at zero

Thus A; = 0 and the solution is
X = Bjsin Vz
Now use the condition at L
X'(L) + X(L) = VAB;cos VAL + Bysin VAL = 0
If we take B; = 0, we get a trivial solution, but we have another choice, namely
VAcos VAL + sin VAL = 0

If cos VAL = 0 then we are left with sin\/AL = 0 which is not possible (the cosine and
sine functions do not vanish at the same points).
Thus cos VAL # 0 and upon dividing by it we get

—\/X = tan \/XL

This can be solved graphically or numerically (see figure). The points of intersection are
values of v/\,. The solution is then depending on n, and obtained by substituting A,

X,(x) = sin \/)\7713:
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Figure 25: Graphical solution of the eigenvalue problem
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CHAPTER 5

5 Fourier Series

5.1 Introduction
5.2 Orthogonality
5.3 Computation of Coefficients

Problems

1. For the following functions, sketch the Fourier series of f(x) on the interval [—L, L].
Compare f(z) to its Fourier series

a. f(z)=1
b. f(z) = x*
c. flx)=¢€"
d. .
ro={3 150
e.
0 x<§
flx) =
x> L

2. Sketch the Fourier series of f(x) on the interval [—L, L] and evaluate the Fourier coeffi-
cients for each

a. f(r)==x
b. f(r) =sinfz
“ 1 Jol <L
fx) =
0 |z] > £

3. Show that the Fourier series operation is linear, i.e. the Fourier series of af(x) + (g(x)
is the sum of the Fourier series of f(x) and g(x) multiplied by the corresponding constant.
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Figure 27: Graph of its periodic extension

La f(x) =1
Since the periodic extension of f(x) is continuous, the Fourier series is identical to (the
periodic extension of) f(z) everywhere.
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Figure 28: Graph of f(z) = ?

Figure 29: Graph of its periodic extension

L.b. f(z) = 2?
Since the periodic extension of f(x) is continuous, the Fourier series is identical to (the
periodic extension of) f(z) everywhere.
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Figure 31: Graph of its periodic extension

Le. f(x) =¢€"

Since the periodic extension of f(z) is discontinuous, the Fourier series is identical to (the
periodic extension of) f(z) everywhere except for the points of discontinuities. At z = +L
(and similar points in each period), we have the average value, i.e.

el + e L
2

= cosh L
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Figure 32: Graph of f(x)

Figure 33: Graph of its periodic extension

1.d.

Since the periodic extension of f(z) is discontinuous, the Fourier series is identical to
(the periodic extension of) f(z) everywhere except at the points of discontinuities. At those
points x = +L (and similar points in each period), we have

3L + (—3L) 5

=°r
2 4
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Figure 34: Graph of f(x)

Al

Figure 35: Graph of its periodic extension

l.e.
Since the periodic extension of f(z) is discontinuous, the Fourier series is identical to
(the periodic extension of) f(z) everywhere except at the points of discontinuities. At those

points x = +L (and similar points in each period), we have
L+0 1

212
2 2

At the point L/2 and similar ones in each period we have

0+ 3% _ Lo
2 8
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Figure 37: Graph of its periodic extension

2.a. f(x) ==

Since the periodic extension of f(z) is discontinuous, the Fourier series is identical to
(the periodic extension of) f(z) everywhere except at the points of discontinuities. At those
point = 4L (and similar points in each period), we have

L+ (-L)
2

=0

Now we evaluate the coefficients.

1 L d 1 L d
a=73 [ J@yde =7 [ wde=0

Since we have integrated an odd function on a symmetric interval. Similarly for all a,.

1 /L 1 (- nm L nm
bn = T /_L f(x) sin%xdm = E{%‘LL + /_L COSmLxdx}

L L
This was a result of integration by parts.

M nm
B l —Lcosnm — L cos(—n) sin “Fx |L
- nmw nmw 2 |I-L
EL7 £ (%)
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The last term vanishes at both end points +L

1 —2L cosnm 2L "
L

Thus o
by = —(—1)"*
m( )

and the Fourier series is
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2.b. This function is already in a Fourier sine series form and thus we can read the
coefficients
a, =0 n=0,1,2,...

b, = 0 n#1
by =1

Lo w2 L

b

-4
-6 -4 -2 0 2 4 6

Figure 38: graph of f(x) for problem 2c

Since the function is even, all the coefficients b,, will vanish.

L/2 L2 1, L L
pu— —_ _— —_—— p— 1
o= 1 [ de = el = G- (=3)
/L/2 1 L . nrm ’L/Q 1 ( nm ) —mr)
G cos—x dr = — — sin—u = — (sin — — sin ——
T I L/2 L nm L L2 nmw 2 2

Since the sine function is odd the last two terms add up and we have

2 . onm
a, = — sin —
nm 2
The Fourier series is . 5
nmw nmw
~ = 4+ — sin — cos —
/() 2 nz:l nmw n 9 LT
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1 x
f(z) ~ 5(10 + 712::1 (an cos %:1: + b, sin %x)

g(x )N—AO + Z (A cos g+ B, smmaa)
=1 L L

where L
nm
a, = Z/—L f(zx) cosfxdx
1 L
b, = Z/—L f(z) sinn%xdx

1 L
A, = z/_L g(x) cos n%xdx

nm

1 /L ) d
Bn:z/_Lg( )smfx x
For af(z) + Bg(x) we have

1 o
270 + 2::1 <% cos n%x + 9, sin n%x)

and the coefficients are

1 /L
0= Z/ (af(x) + Bg(x))dx
~L
which by linearity of the integral is

’}/OZOzL/ dx—i—ﬁL/ x)dxr = aag + BAp

Similarly for v,, and 9,,.

Yo = %/_LL (af(x) + Bg(x)) cos %xdw

which by linearity of the integral is

nmw
Vi aL/ cos—xd:l:+ﬁL/ Cosfxdx—a&n—i-ﬁAn

1 /L
o = 7 [ (af(@) + Byla))sin "o da
LJ-L L
which by linearity of the integral is

n—&L/ 51n—xd:l:+ﬁL/ sm%xdx:abn—i—ﬂBn
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5.4 Relationship to Least Squares
5.5 Convergence

5.6 Fourier Cosine and Sine Series

Problems

1. For each of the following functions
i. Sketch f(x)
ii. Sketch the Fourier series of f(z)
iii. Sketch the Fourier sine series of f(x)
iv. Sketch the Fourier cosine series of f(x)

T z <0
& f(x)—{ 1+2 >0

b. f(x):e
le
fz) = x+1 —2<x<0
N 0<z<?2

2. Sketch the Fourier sine series of

™

f(z) = cos 7%

Roughly sketch the sum of the first three terms of the Fourier sine series.

3. Sketch the Fourier cosine series and evaluate its coeflicients for

1 x<%
L L
flx)=19 3 §<v<3
L
0 §<33'

4. Fourier series can be defined on other intervals besides [—L, L]. Suppose g(y) is defined
on [a, b] and periodic with period b — a. Evaluate the coefficients of the Fourier series.

5. Expand
1 O<z<?
o=y 9557

5} <xr<T
in a series of sin nz.
a. Evaluate the coefficients explicitly.

b. Graph the function to which the series converges to over —27 < x < 27.
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Figure 40: Sketch of the odd extension and its periodic extension for la

1. a.
The Fourier series is the same as the periodic extension except for the points of discon-
tinuities where the Fourier series yields

For the Fourier sine series we take ONLY the right branch on the interval [0, L] and
extend it as an odd function.

Now the same discontinuities are there but the value of the Fourier series at those points
is

1+ (-1)
2

For the Fourier cosine series we need an even extension

Note that the periodic extension IS continuous and the Fourier series gives the exact
same sketch.

=0
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-8 -6 -4 -2 0 2 4 6 8

-8 -6 -4 -2 0 2 4 6 8

Figure 42: Sketch of f(z) and its periodic extension for 1b

1.b.
The Fourier series is the same as the periodic extension except for the points of discon-
tinuities where the Fourier series yields

L L
i = cosh L

For the Fourier sine series we take ONLY the right branch on the interval [0, L] and
extend it as an odd function.
Now the same discontinuities are there but the value of the Fourier series at those points

Lo
dAdbons o

aaia

2 4 6 8

-8

Figure 43: Sketch of the odd extension and its periodic extension for 1b
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Figure 44: Sketch of the even extension and its periodic extension for 1b

is
1+ (-1)
2
For the Fourier cosine series we need an even extension
Note that the periodic extension IS continuous and the Fourier series gives the exact
same sketch.

=0
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S

NN,

-8 -6 -4 -2 0 2 4 6 8

Lo
L oAb on s o
A
-

Lo
& LA bons o

anave

-8 2 4 6 8

Figure 46: Sketch of the odd extension and its periodic extension for 1c

1.c.
The Fourier series is the same as the periodic extension. In fact the Fourier cosine series
is the same!!!

For the Fourier sine series we take ONLY the right branch on the interval [0, L] and
extend it as an odd function.
Now the same discontinuities are there but the value of the Fourier series at those points
is
1+ (-1)

=0
2
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Figure 48: Sketch of the odd extension and its periodic extension for 1d
1.d.

The Fourier series is the same as the periodic extension except for the points of discon-
tinuities where the Fourier series yields

1 0 1

-+0 = = for x = 0 + multiples of 4
2 2

1 2 3

% =5 for x = 2 + multiples of 4

For the Fourier sine series we take ONLY the right branch on the interval [0, L] and
extend it as an odd function.

Now some of the same discontinuities are there but the value of the Fourier series at
those points is

2+ (-2)
2

At the other previous discontinuities we now have continuity.

For the Fourier cosine series we need an even extension

Note that the periodic extension IS continuous and the Fourier series gives the exact
same sketch.

=0 for x = 2 + multiples of 4
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-8 -6 -4 -2 0 2 4 6 8

8 -6 -4 -2 0 2 4 6 8

Figure 50: Sketch of the odd extension for 2
cos W—Lm = nz::lbn sin n%x

0 n odd
bn = 4dn

m n even

Since we have a Fourier sine series, we need the odd extension of f(x)

Now extend by periodicity
At points of discontinuity the Fourier series give zero.
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Figure 51: Sketch of the periodic extension of the odd extension for 2

_ab

8 -6 -4 -2 0 2 4 6 8

Figure 52: Sketch of the Fourier sine series for 2

. : } : T
First two terms of the Fourier sine series of cos T are

b si 2 + by si 4z
= 09 S1N I 4 SIN I
8 2T n 16 4
= — sin — —— sin —
7TS L v 157TS L .
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Figure 53: Sketch of f(x) and its periodic extension for problem 3

1 =< L/6
flz) =<3 L/6 <x < L/2

0 x> 1LJ2

Fourier cosine series coefficients:

2 [ (M0 L M 2 (L (L L
“O_L/o T e 0 _L{6 <2 6)}

{ OL/6 cos " x dv + BILL//g cos ”—L”xdx}

L

2 sin 2L x | L/6 sin 2L x| L/2
= f{ = o'+ 3—=F I
L L
2 | sin 2T sin &T —sin &1
e Z{ MG +3 2M 6
L 6
.on7 . ) .
= %% 3 smT —QSIH% :n—i{?)sm%—Qsm%}
————

o for n even

+1 for n odd
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-10 -5 0 5 10

Figure 54: Sketch of the even extension of f(z) and its periodic extension for problem 3

4.
re[—L, L]
yela, b]
then y = %It 4 2224 (x) is the transformation required (Note that if # = —L then

y = aand if x = L then y = b)
g(y) is periodic of period b — a

Qo o

00) = G0) = %+ 3 (o co B 4 1y sin B

n

1 (L
an = 7 /_L G(z) cos n—;xdx

Therefore

Similarly for b,




-2

Figure 55: Sketch of the periodic extension of the odd extension of f(x) (problem 5)

1 0<z<m/2
flx) =

0 7w/2<z<m

Expand in series of sin nx
™
f(z) ~ Z b, sin nx
n=1

2 T ) 2 w/2 )
b, = — / f(z) sin nxdr = — / 1 - sin nx dx
7 Jo 0

7

T

f(z) =zero on the rest

this takes the values 0, + 1 depending on n!!!
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5.7 Term by Term Differentiation

Problems

1. Given the Fourier sine series

T s . nr
COS —T ~ Z b,, sin fzz:

n=1

an :
T(n2—1) n 1S even

an{ 0 n is odd

Determine the Fourier cosine series of sin %x

2. Consider

o
sinh z ~ Z a, sinnw.
n=1

Determine the coefficients a,, by differentiating twice.
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1.

T

Fourier cosine series of sin T using
T > nmw
cos — = Z b, sin — x
L — L
N ) n—
f(@)
with
0 n odd
bn = 4dn
n even
m(n? — 1)

2 X (nTm 2 nw
= —= by + = [(—1)"*! 1} —
LHZI{L ~[(-1) | | cos ==
T L 2 X TnT 2 nm
n — = ——< —— —b, — = ((=1D)" +1 —
smL W{ L+nz::1[L L(Q,L)}COSLx
=01if n is odd
=2 1if n is even
Substitute for b,
o7 2 4 &= n? nTm
Sl — X :;—; nz:; (n2—1)_1 COSTZ'
—— —_—
n €even 1
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Check constant term %ao where

_2//3, 7rd_2<
ao—LosmLxx—L

This agrees with previous result.

L T
— COS — &
T L
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o0
2. sinh z ~ Z a, Sin nx

n=1
Differentiate (since this is Fourier sine series and sinh 7 # 0, we have to use the formula)

1 > 2
cosh z ~ = (sinh 7 — sinh 0) + ) {nan + —[(=1)" sinh 7 — sinh O]} cos N
m m

n=1
Differentiate again (this time we have Fourier cosine series)

> 2
sinh z ~ 0+ > (—n) {nan + —(—1)" sinh 7T:| sin nx
n=1 ™
2

2
an = —n’a, + (—1)""'n = sinh 7
m

(=1)""'n 2 sinh 7

1 + n?

ap =

If we go thru integration
a, = 2 [f sinh z sin nzdzx

we get the same answer.
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5.8 Term by Term Integration

Problems
1. Consider -
203 aysin
T~ a,sin —x
n=1 L

a. Determine a, by integration of the Fourier sine series of f(z) = 1, i.e. the series

i ! sin2n_17r:1:
2n—1 L

b. Derive the Fourier cosine series of 2® from this.
2. Suppose that
> nmw
cosh x ~ Z b, sin —x
n=1 L
a. Determine the coefficients b,, by differentiating twice.
b. Determine b, by integrating twice.

3. Evaluate N .
2 (2n—1)2

n=1

by using the integration of Fourier sine series of f(x) = 1 (see problem 1 part a.)
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2 o 1 sin 7 T
Integrate
42 1 —L m—1
x_%;Qn—uzn—l)nCOS 7 "h
4L 1 2n — 1 + 4L i 1
= —— cos T + — P
2 = (2n — 1)? L 2 = (2n — 1)2

constant term

To find the constant term %ao

L2
L/ xdm-—x |£:f:L
L 4L & 2n — 1
r=—= - — cos T
2 T = (2n — 1) L
Integrate again
x? L 4L & 1 L . 2n —1 2
S sin T
2 2 T2 = (2n — 1)2 (2n — 1)3 L 0
x? L 4172 i 1 . 2n — 1
— = —x — sin T
2 2 ™ = (2n — 1)3 L
We need Fourier sine series of x to complete the work
See 2a in Section 5.3
>, 2L nmw
— = (1 n+l o, 77
x nz::l nﬂ( )T sin 7
>, 2L n 8L? & 2n -1
2 _r 1" sin -~ ¢ — .
v nZ::lnﬂ'( )" sin L' nz: 2n—1) L

Z 1 I n
sin —mx
3
net13.. 1 L
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.onm
1'2 = Zan S1n TZE

where (only for odd n we get contribution from both sums)

212 82
a = — — —3
T T
212
a —_
2 2w
212 8L? 1
e = 22 S 2
7 37 133

and so on.
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o0

. onw

1b. 3:2:2 ansmfx
n=1

To get the cosine series for 2°, let’s integrate

3 00 nm
i COS — X
_ L
3 + C = Z&" nm
L

nmw

Integrate again on [0, L] the integral of cos *7

x will give zero

L 3
/ —dr + Cxl}f =0
o 3

Ly oL =0
L4
— 4+ CL =
12 +
L3
C = ——
12
3 L3 3L X a, nmw
= r=— - — — CcoS — T
4 T =N L

where a,, as in la

This problem can be done as in 1a.

Integrate the series from 0 to x
.1173 00 nw

PR 1
= L
Mult1plyby3
P Yae 3y e
n=1 A

L n=1 L

nm
L

{

constant term=1/2ao
To find the constant term we evaluate diredtly

2 L 24 4 3
0:_/ ﬁdm:_x_L_zL_:L_
L Jo L

4‘0_L4 2
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Figure 56: Sketch of the even extension of f(z) = x* (problem 1b)

(o]
.on7
~ ansmfx

n=1

2. cosh z
—

even function on [-L, L]

To get sine series we must take the odd extension

1
a. sinh x ~ — [cosh L — cosh 0
L W—/

=1

n=1

constant

Differentiate again

2

>, /nm
cosh x ~ O+§ <—bn—|——
=\ L L

n=1

nm\2 2nm
e (M)

+> (%bn%—

(=1)" cosh L — 1]) (

2
L

nm

L

s nm\? 2n " . nT
=Y <_ (T) b, — Iz [(=1)" cosh L — 1]) sin —~

[(=1)" cosh L — 1]

_ - 2T [(—1)" cosh L — 1]

L+ ()
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nm

L

(—1)" cosh L — cosh 0
~———

=1

—— sin — x)

nim
COS ——
7 T



b. Integrations

first
nm

1 © L
sinh z = = Ay + E (——) b, cos —x
2 — L

nim

where A4y = % J sinh zdx = 2 (cosh L — 1)

second
[e%s) L 2
coshz — 1 = Aoz + > [— (—) bnsin%x]

n=1 nm

= > by [1+(ni)2]sin%:z:: 1+ Az

™

Note (Done previously)

.onT
T ~ T; ¢y, SIn T:zc
where o
. = —— -1 n+1
= ——(=1)
and o
1~ Z dn sin Tl'
where
0 n even
2 n
d, = 4 :ﬂ[l—(—l)]
S n odd
nTm

S b+ (L)) = 2L - (~1)7] + Lleosh L — 1] 2L (— 1y

which yields the same answer after longer computations.
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3.

Evaluate

from 1la:

atx = 0

N[

1+

149

1
1+§+
47, T COSST”:L*
7T2 COSL 32
L 4L 1
5‘?(” 2 " ")
52 2 4L



5.9 Full solution of Several Problems

Problems
1. Solve the heat equation
Uy = kg, O<z<L, t>0,
subject to the boundary conditions
u(0,t) = u(L,t) = 0.
Solve the problem subject to the initial value:

u(x,0) = 6sin .

b. u(x,0) =2cos 3w

2. Solve the heat equation

Uy = kg, 0<z<L, t>0,
subject to
uz(0,t) =0, t>0
uz(L,t) =0, t>0
0 z< é
a. u(z,0)=
1 z> %

b. wu(z,0) =6+ 4cos 3.

3. Solve the eigenvalue problem

¢ ==X
subject to
¢(0) = ¢(2m)
¢'(0) = ¢'(2m)

4. Solve Laplace’s equation inside a wedge of radius a and angle «,

13<8u> 1 0%u

"or) o =0

subject to



o

Solve Laplace’s equation inside a rectangle 0 < x < L, 0 <y < H subject to

a. uz(0,y) =u.(L,y) =u(z,0) =0, wu(z,H)= f(x).
b w(0,y) =g(y), w(L,y)=uy(z,0)=u(z, H)=0.
c. u(0,y)=u(L,y)=0, wu(z,0)—uy(z,0)=0, u(z,H)= f(x).

6. Solve Laplace’s equation outside a circular disk of radius a, subject to

a. u(a,0) =1In2+ 4cos36.
b. wu(a,d) = f(0).
7. Solve Laplace’s equation inside the quarter circle of radius 1, subject to
a. ug(r,0) =u(r,m/2) =0, u(1,0) = f(0).
b. UG(T7 O) = UG(T7 7T/2) - 07 UT(L 0) - g(e)
c. u(r,0)=u(r,m7/2)=0, ur(1,0) = 1.

@

Solve Laplace’s equation inside a circular annulus (a < r < b), subject to
a0 =f0),  u(b0)=g(0).
b. u.(a,0)=f(0),  u.(b,0)=g(0)

9. Solve Laplace’s equation inside a semi-infinite strip (0 < z < oo, 0 < y < H) subject
to

uy(z,0) =0, uy(z, H) =0, u(0,y) = f(y).
10. Consider the heat equation
Up = Ugy + q(, 1), 0<x<L,
subject to the boundary conditions
u(0,t) = u(L,t) = 0.

Assume that ¢(x,t) is a piecewise smooth function of = for each positive t. Also assume that
u and u, are continuous functions of x and u,, and u; are piecewise smooth. Thus

nm

u(z,t) = by(t)sin -
n=1

Write the ordinary differential equation satisfied by b, (t).

11. Solve the following inhomogeneous problem

0 0? 3
8_1; = kﬁ—xz +e '+ e cos %x,
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subject to
ou ou
u(z,0) = f(x).

. . . . . 2
Hint : Look for a solution as a Fourier cosine series. Assume k # %.

12. Solve the wave equation by the method of separation of variables

Ugt — CPUgy = 0, O<z<L,
u(0,t) =0,
u(L,t) =0,
U(ZL‘,O) = f(l‘),
w(x,0) = g(x)
13. Solve the heat equation
Up = 2Ugy, O0<x<L,

subject to the boundary conditions
u(0,t) = u,(L,t) =0,

and the initial condition
(x,0) = sin §zx
u(x,0) = 57

14. Solve the heat equation

Ou (10 ( 0u) 10
o "\ror\"ar ) T 2002

inside a disk of radius a subject to the boundary condition

ou
E(a,@,t) = O,

and the initial condition

u(r,0,0) = f(r,0)

where f(r,0) is a given function.
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la. u; = kug,
u(0,t) =0

u(L,t) =0

9
u(z, 0) = 6 sin e

L
u(z, t) = Y B, sin DTT ekt
n=1
u(z, 0) = i B, sin 270 = singﬂ—x
g L L

= the only term from the sum that can survive is for n =9 with By =6
forn # 9

9
= u(x, t) = 6 sin e

e kCE)t

3
b. wu(x, 0) = 2 cos G

ulr, 1) = 3 By sin I kO
n=1

s nmTT 3T
B,, si =2
nz::l sin 7 cos 7

2 (L 3
= B”:E/o 2 cos szinnzxdx

compute the integral for n = 1,2,... to get B,,.
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To compute the coefficients, we need the integral

/L 3T nm p
cos —x sin —x dx
0 L L

Using the trigonometric identity
: L. :
sina cosb = 5 (sin(a + b) + sin(a — b))

we have

2/ ( n+3 x—l—sinwx)dx

Now for n # 3 the integral is

1cos 8T, 1 cos @x I
B R el el ey e
L L
or when recalling that cosmm = (—1)™
L L
e -1 n+3 1 = —— -1 n—3 1
27(n + 3) [( ) } 2m(n — 3) [( ) }’

Note that for n odd, the coefficient is zero.

For n = 3 the integral is

L 3
/ CoS —Wx sin —xdx = / sin —xdx
0 L 2
which is | I "
T
gl =0
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2 . Uy = kumx

uz(0,t) =0
ug(L, t) =0
u(z, 0) = f(z)

u(z, t) = X(z) T(t)

Tr = kX"T

T X
= = )
kT T

T+ kT =0

nmxr
X"+ AX =0 X, = Ay cos Z ., n=12,
2
X0 =0 = A <n—;> . on=1,2,
X'(L) =0

Tn = Bn 6_(%)2 kt

u(z, t) = AgBy + > A, cos ﬂLx B, ¢~ ()2 Kt
=ag n=1

u(z, t) = ag + Y ay cos nre

o (BE) kt
n=1 L
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0 x < LJ2

flx) =
1 = > L)2

u(z, 0) = f(z) = ag + i Ay COS — X

n=1

nm

L

2 /L nT 4 2 L . nm |
a, = — cos —xdr = —— sin —ux =
L Jry L Lnm L Ly
1 > 2 nx
u(z, t) = 5t nz::l (_ﬂ sin %) cosn—[jrxe”“(T)Qt

3
flz) =6 +4cos%x

o
nmw
:ao—i-Zancosfx
n=1

(l0:6

az = 4 a, =0 n # 3

u(z, t) = 6 + 4 cos 3T e FE)

156

2



&+ 26 =0
?(0) = o (2)
¥ (0) = ¢ (2m)

A >0 ¢ = Acos Viz + Bsin VAz

¢ = —AV)\sin Viz + BV cosVAz

$(0) = ¢(27) = A = A cos 2r VA + B sin 20V A

¢ (0) = ¢ (21) = BVA = —AVXsin 2 VA + BV cos 2r VA

A1 — cos 2 VA) — B sin 2 VA = 0

AV sin 20 VA + BVA(1 — cos 2r V) = 0

A system of 2 homogeneous equations. To get a nontrivial solution one must have the
determinant = 0.

1 — cos 2T VA —sin 27 VA

VA sin 27 VA \/X(l — COS 27T\/X)

Il
o

VA (1 = cos 2 VA)? + VA sin? 21 VA = 0

VA {1 = 2cos 20 VA + cos® 2 VA + sin® 20V} = 0
1
WALl —cos2rVA} =0 = VA =0 or cos2rVA =1

2V =2rn n=1,2, ...
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»(0)=0¢(2r) = B=2rA+B = A=0

$0)=¢(2r) = A=A

= A=0 ¢=38B

A< 0 ¢ = AV 4 Be Ve

$(0) = 6(21r) = A+ B = AeV " 4 Be VA

¢ 0) = ¢ (21) = VA — VoAB = VoAV — /X Be 7V

All — @™V + B[l — eV =0

VXA L = e = BYER[L - eV =0

1 — 22 1 — e—2mV—A

Il
o

V=A(1 — 2™V VTR (1 — eV

—/ =\ (1 . 627r\/—_)\) (1 . 6—27r\/—_>\) . /_/\(1 o 627r\/—_)\) (1 . 6_27“/__)\) — 0
_2\/_—)\(1 _ 627r\/j)\) (1 . ewi\/j)\) S
1—e2™V=2 —

eQﬂ\/j =1 6727r\/7_)\ -1
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4.

Take In of both sides

2tV =N =0 =2tV =\ =0
vV—=A =0 vV=A=0
not possible not possible

Thus trivial solution if A < 0

ror T@r r2 902

u(a, 0) = f(0)
u(r,0) = up(r,a) =0

u(r,0) = R(r)©(0)

li T@_R _}_iRa2_@_O
ror or r2 002
ltiply by
t1 —

multiply by -~

r /N\/ @// _
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O 4+ 0 =0

©, = sin(n — 1/2)29

o = [0 —1/2) 7]

«

n=12 ...

r(rR) —uR =10
|R(0)| < oo
R, = ro-bE
only positive exponent

because of boundedness

> —1/2
u(r, ) = > a,r™ 7/ gin n-1/ v,
n=1 o
> —1/2
f(e) _ Z ana(n—l/Q)w/a sin (n / )7]-0
a

n=1

Tl:

Jo f(0) sin(n —1/2)260d6

alr=1/2m/e (% sin® (n — 1/2) Z0d 0
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5. Uy + Uy = 0
uz (0,y) =0
uy (L, y) =0
w(z, 0) = 0
u(z, H) = f(x)

X//
u(z,y) = X@)Yly) = v =
u (0,y) =0 = X' (0)=0
uz (L,y) =0 = X'(L)=0

u(z,0) =0 = Y(0) =0

S X'+AX =0 Y'-AY =0
X'(0) = 0 Y (0) =

X'(L) = 0

|} Table at the end of Chapter 4

2
An:(%) n=012 ...

2
xn:cosn%x N YA’—(”%) Y, =0 n=012..

Ifn:O:>Y0":O:Y0:A0y—|—BO
Yo(0) = 0 = By = 0
= Yo(y) = Aoy

\2

nm 2 n
Ifn#0=Y, = Ane(T) v + Bnef(T) Y
or
Y, = C,, sinh (Ey + Dn>
L
Y,(0) =0= D, =0

=Y, = C, sinh n%y
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Kad n n
u(z,y) = Aoy -1+ Y a,C, cos Tﬂx sinh Tﬂy
ag n=1 an

2

u(z, H) = % + > a, sinh %H cos %x = f(x)

n=1

This is the Fourier cosine series of f(z)

CL()H:

L .onT
a, sinh — H =

2 L d
= ao_ﬁ/o f(z)dx
2 L nm
S T d
fin Lsinh%H/o Jlw) cos Frud

and:
nT

u(z, y) = %y + 221&” sinh n%y cos -
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5 b Uy + uy =0

u(0,y) = 9(y)
u(L,y) =0
Uy (x,0) =0
u(z, H) =0
X"—AX =0 Y'"+ AY =0
X(L) =0 Y'(0) =0
Y(H) =0
Using the summary of Chapter 4 we have
1
Y, (y) = cos Wy, n=0,1,
2
n+3i)mw
Ap = %] n=20,1,...
(n+iHm 2
Now use these eigenvalues in the x equation: X, — { 7 ] X, =0 n =
Solve:
X, = ¢, sinh((n+ %) %x + D )
Use the boundary condition: L) =
X,(L) = ¢, smh(( ) D ) $ + D, =0

+
= X, = ¢, sinh <% (x — L))

7

= U(.CE, y) = nio% a,, sinh [w (.CE _ L)] oS (TL i %) Ey

To find the coefficients a,,, we use the inhomogeneous boundary condition:
(n + $)m 1\ =
, - D) (ns D) T
u(0, y) Za sin < 7 (—L) | cos n+2 7Y
This is a Fourier cosine series expansion of g(y), thus the coefficients are:

. (n+ 3 1\ =
— sinh T n H/ ) cos [(n + 5) Ey] dy

Ay = 1 gly) cos n 5] FY|ay
—H sinh LJFE,)WL 0 2/ H
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5.c u0,y9) =0 = X(0)=0
uw(L,y) =0 = X(L)=0
(z, 0) (,0) =0 = Y(0)—Y'(0) =0
X" 4 AX =0 vy - (%) v, =
X(0) =0 Y,(0) — Y'(0) =0
X(L) =0
[k Y, = A, cosh =*y + B, sinh ="y
Ap = (%)2 n=1,2, Y, =% {An sinh 2%y + B, cosh %y}
X, = sin “Fx Substitute in the boundary condition.
(b~ 2 B o0+ (B~ Agnho = o
£0 =0
= A, = "B,
Y, = B, [% cosh %y + sinh %y
u(z, y) = nz:lb sm%x[% coshfy—i-smhf ]

Use the boundary condition u(z, H) = f(z)

[e) n
= Z b,, sin
n=1

Tﬂx {n—ﬂ cosh—H + sinh TH}

This is a Fourier sine series of f(x)

by, {E cosh —H + sinh —H] =

L L

Solve for b,

L L

, thus the coefficients b,, are given by

il

sin — xdm

2

nim

by
=% cosh "= H + sinh %2 H

sin I x dx

]L/OLf(:r)
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6a. U + %ur + T%UQQ =0 outside circle
u(a, ) = In2 + 4 cos 30
u(r, 0) = R(r)© ()

”R'+rR — AR =0 0"+ X0 =0
0(0) = 0(27)
A = ORO = g + Bo Inr @,(0) = @,(271')

)\:7712Rn = &nrn + ﬂnr_n ‘U’

Since we are solving A < 0 trivial solution
outside the circle A=0 6y) =1
Inr - 00 asr— oo A>0 N\, =n?
r" — o0 asr — oo 0, = A, cosnf + B, sin nf
thus Ry = «

R, = g,r "

u(r, 0) = agag - 1 + Z a, (A, cos n® + B, sin nf) G, r "
——

=ap/2 n=1

u(r, 0) = ao/2 + Y _ (a, cos nf + b, sin nf) r"
n=1
Use the boundary condition:

u(a, 0) = % + > (apa™™ cos nb + b,a™" sinnfd) = In2 + 4 cos 360
n=1

anba =4 n=3 = a3=4d’

ar,a” =0 n#3 = a,=0 n#3

=lu(r, §) = In 2 + 4a®>r=> cos 36
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6 b. The only difference between this problem and the previous one is the boundary
condition

u(a, 0) = f(0) = % + > (apa™ cos nf + b,a" sin nb)
n=1

= ag, a,a” ", b,a™" are coefficients of Fourier series of f

w= L[ swan

T J—7

1 T
a,a "= —/ f(0) cosnbdé

™ J—m

1 ™
bpa" = —/ £(6) sin n0do
T J—7

Divide the last two equations by a™" to get the coefficients a,, and b,,.
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1 1
Ta. Uy + —Uu, + — Uy = 0
r r

ug (r, 0) = 0
u(r,m/2) =0
u(l, 0) = f(0)
PR'+rR — AR =0 ©” + X0 = 0 no periodicity !!
o' (0) = 0
R, = ¢, ™t + D, r*1 ' (r/2) =0
n—1 If A < 0 trivial

boundedness implies R,, = ¢,

)\ZOG)OZA()Q—FBO

@0(77'/2):0 = By=0

trivial
A > 00 = Acos VA0 + Bsin V)0
O = —vVAAsin VA0 + BV cos VO
©0)=0= B=0
O(r/2) = 0 = Acos VAr/2 =0

\/XW/QZ(H—%)W n:1’2’...
\/XZQ(TL—%):Qn—l

Ao = (2n — 1)

O, =cos(2n—-1)0 , n=12---

Therefore the solution is

u=>Y a, ™ 'cos(2n — 1)0
n=1
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Use the boundary condition

u(l, 0) = i a, cos(2n — 1)6 = f(6)

n=1

This is a Fourier cosine series of f(6), thus the coefficients are given by

2 w/2
a, = 7—/2/0 f(0) cos(2n — 1)0d6

Remark: Since there is no constant term in this Fourier cosine series, we should have

/Oﬂ/2 £(6)d0 = 0

ag =

NEIRN

That means that the boundary condition on the curved part of the domain is not arbitrary
but must satisfy

/Oﬂ/2 £(6)d0 = 0
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7b. ug(r,0) =
ug (r, m/2) =0

ur(1, 0) = g(0)

Use 7a to get the 2 ODEs
0" + X0 =0 PR ' +rR — AR =0
©'0) =0 (n/2) =0
4
2
A = <”_—7f) = 2n)? n=012...
O, = cos 2n 4, n=20,12...
Now substitute the eigenvalues in the R equation
”R'+rR — (2n)?R =0

The solution is
ROZCOIHT+D0, n =20
n

R, = C,r™ + D, r*, =12,...

Since Inr and 72" blow up as r — 0 we have Cy = C,, = 0. Thus

u(r,0) = ag + Y a,r*" cos 2nf

n=1

Apply the inhomogeneous boundary condition
ur(r,0) = > 2na, ™" cos 2nf
n=1

Andatr =1 -
u(1,0) = > 2na, cos 2nf = g(0)

n=1

This is a Fourier cosine series for g(6) and thus

72 4(6) cos 2n6 db
fgr/Q cos? 2n6 db

2na, =

/2 9(0) cos 2n0 df
an = 0 252)COS r n:1,2,...
2n [y'° cos? 2n6 do

Note: aq is still arbitrary. Thus the solution is not unique.

w/2
/ g(0) dfd = 0 which is to say that ag = 0.
0
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7c u(r,0)=0
u(r,7/2) =0

ur(1,0) =1

Use 7a to get the 2 ODEs
0"+ X0 =0 PR ' +rR — AR =0
©0) =6 (r/2) =0
\
2
&1:(%ﬁ — ) n=12...
O, = sin 2n6, n=12...
Now substitute the eigenvalues in the R equation
PR+ rR — (2n)*?’R =0

The solution is
R, = C,r 2" + D, r*", n=12...

Since 72" blow up as r — 0 we have C,, = 0. Thus

u(r,0) = > a,r*™ sin 2nf
n=1

Apply the inhomogeneous boundary condition
ur(r,0) = Y 2na,r* " sin 2nf
n=1

Andatr =1 -
u,(1,0) = > 2na, sin 2nf = 1

n=1
This is a Fourier sine series for the constant function 1 and thus
/21 . sin 2n6 do
fgr/Q sin? 2n6 d

2na, =

721 sin2ngdg  ECNS 1 (<)

— — 2n _
2n fJ” sin? 2n6 df 2n3 n*m

n

1-(=D")

a, =
n2mw
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1 1
8a. urr+—ur+—2ue9:0
r r

u(a, 8) = f(0)
u(b, 0) = g(0)

PR +rR — AR =0 0"+ X0 =0
0(0) = ©(27)
e'(0) = ©'(27)
The eigenvalues and eigenfunctions can be found in the summary of chapter 4
M =0 Oy =1 formn =0
A = n? O, = cosn# and sinnf forn =1,2,...
Use these eigenvalues in the R equation and we get the following solutions:
Ry = Ay + By Inr n=2>0
R, =A,m" + B,r " n=12...

Since r = 0 is outside the domain and r is finite, we have no reason to throw away any of
the 4 parameters Ag, A,,, By, B,,.

Thus the solution

u(r, 0) = (Ap + By In 1) L ao + > (A" + B,r") (an cos nf + b, sin nb)

=1
Ro ©o " Ry, O

Use the 2 inhomogeneous boundary conditions

f(0) = u(a, ) = Agap + Boag In a + Z (A,a" + B,a™")a, cos no

n=1
[e74] Qn

+ Z (A, a"™ + B,a™")b, sin nf
n=1
Bn

g(0) = u(b, 0) = Agag + Boap In b + Z (A, 0" + B,b™")a, cos no

Y0 n=1 Yn
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+ Y (A, 0" + B,b") by, sin nf

n=1

on

These are Fourier series of f(6) and ¢(6) thus the coefficients ag, a,, 3, for f and the
coefficients 7o, ¥, 0, for g can be written as follows

2

Qo = ! /027T f(9>d9

1 27

ap = = / £(6) cosnb do
™ Jo
1 21

B, = - / £(6) sinnf do
™ Jo

1 21
Yo = %/o g(0)do

2m
/ g(0) cosné db
0

Op =

S

2
/ g(0) sinnd do
0

On the other hand these coefficients are related to the unknowns Ay, ag, By, by, An, apn, By

and b,, via the three systems of 2 equations each

ag = Agag + Bpag In a
solve for Agag, By ag
Yo = A()CLO + Bo(lo Inb

a, = (A,a" + Bya ") ay,
solve for A, a,, B, a,,

Bn = (A,a" + B,a ™) b,
solve for A, b,, B, b,
op = (A 0" + B, b™") by,

Notice that we only need the products Agag, Boby,Anay,, Bnan,, Ab,, and B,b,.

Yo — Qg

Byag = 0 — @0
09 = 10~ Ina
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ag Inb — 79 Ina

A =
0o b — Ina
a,b" — ypa”
Bn n —
a bnafn _ &nbfn
Y b — ana”
Anan = h2n — g2n
In a similar fashion B.b 5
n - nan
Bnbn =
bnafn _ anbfn
0,0" — B,a"
Anbn = h2n _ g2n
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8. b  Similar to 8.a

u(r, 0) = (Ag + BoInr)ag + > (A,r™ 4+ Byr™") (a, cos nf + b, sin nb)

n=1
To use the boundary conditions:

ur(a, 0) = f(0)

ur(b, 0) = g(0)

We need to differentiate v with respect to r

By

ur(r, 0) = —ag + > (nA, """ — nB,r " ") (a, cos n + b, sin nb)
r

n=1

Substitute r = a

B [e.e]
uy(a, 0) = =2ag + Y (nA,a"" — nB,a ") (a, cos nd + b, sin nb)
a

n=1
This is a Fourier series expansion of f(6) thus the coefficients are

By 1
a&O_QW

/02” £(6)d0 = ag

(nA,a™' — nB,a~ " Ya, =

27
/ £(6) cos nfdf = a,
0

/027r f(0) sin nfdf = g,

(nAn@nil - anainil)bn =

A= A=

Now substitute r = b

B o0
ur(b, 0) = 70610 + > (A — nB, b7 ") (a, cos nf + b, sin nb)

n=1

This is a Fourier series expansion of g(6) thus the coefficients are

BO 1 27
—ay = — 0)do =
b Qo o /0 g( ) Yo
n—1 —n—1 ]' m —
(nAyb — nB,b Ya, = — / g(0) cos nfdo = ~,
7 Jo
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27
(nAD"™r — nB,b" b, = / g(0) sin nfdo = 6,
0

3 |-

Solve for A,a,,, Bpa,:
(nA,a™' — nBy,a " Ha, = oy,

(nAnb”_1 — anb_”_l)an = Y
We have

ay, bfnfl — Y afnfl

n(an—l b—n—l _ bn—l a—n—l)

Anan =
a,, bnfl - Y anfl

Bn n —
a n(an—l b—n—l _ bn—l a—n—l)

Solve for A,b,, B,b,:
(nAwa"™™" — 0By~ b, = 6,

(nAL" Y — nB,b" Hb, = 6,

We have ponol 5 gened
Anbn _ ﬁn — 0nQ
n(an—l b—n—l _ bn—l a—n—l)
n—1 _ n—1
B.b — Bnb Op @

n(an—l b—n—l _ bn—l a—n—l)

There are two equations for Byag:
Boag = by

B()CL() = aQy

This means that f and g are not independent, but
acg = by

which means that o o
o [T @ =0 [ g0)a8
0 0

Note also that there is no condition on Agay.
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Figure 57: Sketch of domain

9.
Uy (,0) =0
uy (z, H) = 0
u(0,y) = f(y)
X'"—AX =0 Y"+AY =0
solution should Y'(0) =0
be bounded Y'(H) =0
when z — o0 copy from table in Chapter 4 summary
2
A= (57)
n=201,2---
Y, = cos 5F

X,’{—(%fxn:o n=12"-.

X, = A, eF* 4+ B,e" HB®

to get bounded solution A, =0
Forn =0

X =0

XO = Aol' + BO
for boundedness Ag =0

s nw n
w= By -1+ Z B, e” B " cos fﬂy
n=1

> nTm
u(0,y) = f(y) = Bo + Y By cos 7Y
n=1

Fourier cosine series of f(y).
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10. U = Uge + q(z, t) 0<z< L

subject to BC (0, t) = u(L,t) =0

Assume: ¢(z, t) piecewise smooth for each positive t.
u and u, continuous
Uz, and u; piecewise smooth.

Thus,

u(z, t) = Y by(t) sin n%x
n=1

(a). Write the ODE satisfied by b,(t), and
(b). Solve this heat equation.

STEPS:

1. Compute g, (t), the known heat source coefficient

2. Plug v and q series expansions into PDE.

3. Solve for b,(t) - the homogeneous and particular solutions, b2 (¢) and b’ (t)

4. Apply initial condition, b,(0), to find coefficient A,, in the b,(t) solution.

u(z, 0) = f(x)
1.
q(z, t) = i gn(t) sin BT
n=1 L
Qn(t) = % /OL q(x, t) sin n%xdx
2.

s nTm

uy = Y b (t) sin 77

n=1

Uy = i b (t) [— <%ﬂ sin 1"

n=1
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00 00 2 00
> b, (t) sin Ty = > b (t) [— (n_w) ] sin -z + > qu(t) sin
n=1 L n=1 L L

n=1

We have a Fourier Sine series on left and Fourier Sine series on right, so the coefficients
must be the same; i.e.,

(a) b, (t) = — (M)Q bu(t) + qu(t)| = A first order ODE for b, ().

L Solve B, (t) = — (%) bu(t) + qu(t)
Solution Form: b, (t) = A, bH(t) + bl (t)
Homogeneous Solution: b (t) = e ()t

Particular Solution: b (t) = (") t/ e (') T qn(T)dr
0

(Step IV is an extra step, not required in homework problem.)

IV. Find A, from initial condition. u(z, 0) Z sin n% x
9 (L

b,(0) = — f(z) sin BT o ds
L Jo

bn( L/ ( sin —xdx) (e(%)2t> + e(%)% /t e*("—J)Qan(T) dr

Plug this into  u(z, t) = Y02, by(t) sin “F x




11. u = kug, + e 2 cos ST x

L
—_———
q(z,t)
ug (0,¢) =0
uz (L, t) =0
u(z, 0) = f(z)
The boundary conditions imply
> nm

u(z, t) = z_:o b, (t) cos Sk

Let q(x, t) = Y gu(t) cos %x = qt) = e
n=0
q3(t) = e™*  the rest are zero !
Thus
7\ 2
bn:—k(L>bn+qn n =01,
n=20 bo=q =¢€¢' = b= —et

homogeneous
/ 2n 2
. 3nm? _
k(B
rest are homogeneous.
One can solve each equation to obtain all b,.
. nim 2 7/€(M 2t
bn+k(7> b, =0 = b, = Ce"("T)t 5 = 1,245, ...
note: n # 3
. 3m\? _ot : .
bs + k (T) by = e Solution of homogeneous is

3

x\2
by = Cye k()
For particular solution try by = C'e™
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[—2+k (3%)2] C=1
- k(%ﬂ} —9

denominator is not zero as assumed in the problem.

k(37)%¢ —
= bSZCSE(L) +k:(3T”71)2—262t
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12 uyp — Cuge =0 0<x <L
w(0,8) = u(L, t) = 0
u(z, 0) = f(z)
w(z, 0) = g(x)

XT" - X"T =0

Tl/ X/l
or - x - )
X"+ 2X =0 T + AT =0

X(0) = X(L) = 0

2
Xn:sm”%x T,’;+(”T7T) AT, =0
n=12:-
2
Ay, = <n%) T, = a, cos nzc

n=1

= n nmce nm
u(z, t) =Y {ozn Cos t + [, sin Tt} sin — x

u(z, 0) = f(z) = i a;, sin %x
n=1

o0

nmc nm
O — — — On, 1 JRE——
o, 0) = g(a) = 3 200, sin
9 L
=7 | f(x) sin n—ljrxdx
9 L
nzcﬁn =7/, g(z) sin n—;xdx
2 L nm
— in 2T d
B nwc/o g(x) sin 7 rde
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13. up = 2uyy,

u(0,t) =0
ug (L, t) =0
u(z, 0) = sin 2Tz
u = XT
XT = 2X"T
T X .
5T % + 0 + 0
X(0) =0
X’(L) =0
1
Xn:sin<n+§>%x n =
1\ 712
Ap = — ) =
(n+3) 7]
(o0} " 1
U(ZE,t) = Z an672[((n+2)f] tSiH (n + —) zl‘
n=1 2 L
At t =

But also
u(x, 0) = sin 2

Therefore
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14. w = k E (ru,), + %Uee}

u, (a, 0,t) =0 inside a disk
u(r, 0,0) = f(r, 0)

OT'R = kT [0L(rR) + % RO"|

T/ B %(T’R/)/ 1 @// B

- R Tme
1 R 1 "
T + AkT =0 () + — 9 = — )\ multiply through by r*
R r? ©
r(rR’) 9 e"
)\ = - =
R + Ar 5 7
0" + uO = 0; r(rR) + Ar*R — pR = 0
©0) =62 | R(0)]| < oo
0'(0) = ©'(27) R'(a) =0
\ !
fn = 1 R = J,(V\r)
n=12 .-
sin n 6 )
0, = { J'(VXa) =0 gives A\pm,
cos n6

po = 0 O =1

T;Lm + A kL, = 0 — T = €_>\nm kt

u(r, 0,t) = Z l% + Z (a, cos n@ + b, sin nQ)] . (\/)\nmr) ek Anmt
n=1 ——

m=1 Tnm

@n Rn m

f,0) = >

m=1

l% + nz::l(@n cos nf + b, sin n@)} I (\/)\nmr)

Fourier-Bessel expansion of f.

See (7.5 later)
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6 Sturm-Liouville Eigenvalue Problem
6.1 Introduction
Problems

1. a. Show that the following is a regular Sturm-Liouville problem

X"(x)+ XX () =0,

b. Find the eigenpairs \,, X, directly.
c. Show that these pairs satisfy the results of the theorem.

2. Prove (6.1.28) - (6.1.30).
3. a. Is the following a regular Sturm-Liouville problem?
X"(x) + AX(z) =0,

X(0) = X(L),
X'(0) = X'(L).

Why or why not?
b. Find the eigenpairs \,, X,, directly.
c. Do they satisfy the results of the theorem? Why or why not?

4. Solve the regular Sturm-Liouville problem
X"(z) +aX(x)+ AX(x) =0, a>0,

X(0) = X(L) = 0.

For what range of values of a is A negative?
5. Solve the ODE

X"(x) + 2aX (x) + AX (z) = 0, a>1,

6. Consider the following Sturm-Liouville eigenvalue problem

d du 1
A—u =0, 1<z <2,
x

dr \"dx
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with boundary conditions
u(l) =u(2) =0.

Determine the sign of all the eigenvalues of this problem (you don’t have to explicitly deter-
mine the eigenvalues). In particular, is zero an eigenvalue of this problem?

7. Consider the following model approximating the motion of a string whose density (along

the string) is proportional to (1 + z)72,

(14 2) Uy — Upe = 0, 0<x<l, t>0
subject to the following initial conditions
u(x,()) = f(l'),

u(z,0) =0,
and boundary conditions
u(0,t) = u(L,t) = 0.
a. Show that the ODE for X resulting from separation of variables is

A
X'+ X =0
T arap

b. Obtain the boundary conditions and solve.
Hint: Try X = (14 2)*
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C.

p continuous & positive
q continuous & nonnegative
o continuous & positive

B =1 Ba =0 Bz =0 By =

See chapter 4

Infinitely many eigenvalues

A1 1s smallest

no largest

X, are orthogonal

one eigenvalue for each eigenfunctions

and so on
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. The eigenfunctions X,,(z) and the eigenvalues are \,. Use these A, in (6.1.24)
T, + X1, =0

= T,(t) = C, e T

Zan )\ntX )

att =0 u(z,0) => a,Xn(z), a, are T,(0) in (6.1.28)

To find a, we use the Fourier series expansion of f(z) = u(x, 0)

Jo' f(2) X, (2) e(2) pl) dz
o X3@) @) plx)  de

—_——
weight function

= Ay,

If a; # 0 clearly \; is the smallest and thus a; e™** X (z) dies the slowest.
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3a. No, because the boundary conditions are not of the form

BLX (0) + B X7 (0) = 0

Bs X (L) + 1 X'(L) = 0

b. eigenpairs found in chapter 4

9 sin Q”T”x
2nm
cos Q"T’Tx

c. No, because we have more than one eigenfunction for some eigenvalues.

188



X" +aX +2X =0 a >0

X — e[LLU

pr4a+ =0

w==xvV-a— A

Ifa+A>0 (A > —a)

X = Acosva + Ax + Bsin va + Az

= X =Bsinva+ AL =0

va+ AL =nm n=12 -

2
)\n:—a+<n%> n=12, -

(show that if @ + A < 0 the solution is trivial)

2
A< 0 if —a+(3) <0

a > (m/L)?
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X"+ 2aX + XX =0 a>1

w420+ X =0

L= +vV-A— 2«

A+ 2a >0 (A > —2a)

X = Acos VA + 2az + Bsin VA + 2az
X0)=0=A4A=0
X/(1) = BVA £ 2a cos VA T 20 = 0
m:g+nw n=2012---

A= —2a + Kn + %) wr

1
X,, = sin <n+§> T

n=012:-

If @ > 1, X could be negative if o > %

If1 < a < Z then all A are > 0.
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1
(xu) + A=u =20 l<ax<?2
T

1
Use Rayleigh quotient p =z, g =0, o= -
x

- —zuu' [P+ [Fr(W)de [P aW)da

I %UQ dx 2 %uQ dx

denominator is positive
numerator could be zero if u = constant. = XA > 0

Is that (A = 0) a possibility?

A=0=(zu) =0

Integrate
zu' = ¢ = constant

/ C
u = -
x

Integrate again
u=clogx+d

ul)=c-0+d=0=d=0
u(2) =0=clog2=0=¢c=10

= A\ = 0 is not an eigenvalue.
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7. (1 + ) 2uy — Uge = 0, 0<z<1
u(z, 0) = f(z)
g (z,0) =0
u(0,t) = u(L,t) =0
(1+2)2XT" — X'"T = 0
(1+2)2 - XL =9

T X

1 "
T X /\

T T (+2)2X

>~

X/,++7X:0 T”—i-AT:O
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6.2 Boundary Conditions of the Third Kind

Problems

1. Use the method of separation of variables to obtain the ODE’s for z and for ¢ for equations
(6.2.1) - (6.2.3).

2. Give the details for the case A > 0 in solving (6.2.4) - (6.2.6).

3. Discuss
lim A,

n—oo

for the above problem.

4. Write the Rayleigh quotient for (6.2.4) - (6.2.6) and show that the eigenvalues are all
positive. (That means we should have considered only case 3.)

5. What if A < 0 in (6.2.3)7 Is there an h for which A\ = 0 is an eigenvalue of this problem?
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1. w = kugy

uw(0,t) =0 = X(0)=0
ugy(L, t) = —hu (L, t) = X'(L) = —h X(L)
T = kX"T
=¥ --a
T+ kXT =0 X"+ AX =0
X(0) =0
X'(L) = —h X(L)
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2.0>0
The solution of the ODE for X is
X = Becos VAz + Asin VAz
X(0)=0=B=0

X'(z) = AVXcos VAz + 0
T

since B = 0
X'(L) = AvVX cos VAL
—~h X (L) = —h Asin VAL
= AV cos VAL = —h A sin VAL
A # 0(to avoid trivial solution)
= VAcos VAL = —h sin VAL

If cos VAL = 0 = —hsin VAL = 0 = sin VAL = 0 not possible.
Therefore we can divide by cos VAL

tan VAL = —¥2
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3. Graphically we see that the straight line crossing the lower branches of tangent function

since the lower branches are for

the eigenvalues are always in these ranges. As n increases, the crossing become closer to
the left side (where tan approaches -00)
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X'(L) = ~h X(L)

Rayleigh quotient

A:

-X X' &

The numerator is

—pXX'|5 + [y {pX? — ¢X?}da

JE o x2de

XX (X2

JE X2 da

— —X (L) X'(L) + X(0) X'(0) = h X(L)?

L
h X(L)2+/ (X)2de >0
N~ 0
>0 >0 _—
>0

since
X #0

since X’ maybe zero

The denominator is positive (integrating X?)

EN

A>0
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5. If h < 0in (6.2.3)

= the numerator is now

L
h X(L)2+/ (X')? dx

—_————
<0

= there is a possibility of zero or negative eigenvalues.
For what h one can have zero eigenvalue ?
check  (6.2.10)

BA+hL)=0 = 1+ hl =0
1
h=—><0
L<
For this case B # 0 = Xy(z) = Bz
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6.3 Proof of Theorem and Generalizations

Problems
1. Show that if u, v both satisfy the boundary conditions (6.1.9)-(6.1.10) then
p(uv —ovu') |2 =0.

2. Show that the right hand side of (6.3.4) is zero even if u, v satisfy periodic boundary
conditions, i.e.

and similarly for v.

3. What can be proved about eigenvalues and eigenfunctions of the circularly symmetric
heat flow problem.

Give details of the proof.

Note: This is a singular Sturm-Liouville problem.

4. Consider the heat flow with convection
U = kg + Vo Uy, O<z<L, t>0.

a. Show that the spatial ordinary differential equation obtained by separation of
variables is not in Sturm-Liouville form.

b. How can it be reduced to S-L form?

c. Solve the initial boundary value problem

w0,8) =0, t>0,
u(L, t) =0, t >0,

u(z, 0) = f(x), 0<z<L.
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) v (6) = ) v
+ =0
o) W (b) = —u'(b) <—%v’(b)>
(3).  assume B £ 0
“u) ) = - (-5 v
+ =0
+v(a)u'(a) = —% v'(a) /' (a)
4). Th=0 (b)) =0
W) = 0
leads to  u(b)v'(b) = 0
d(B)v(d) = 0
(5).  same trueif 3 = 0
v(a) = 0
W(a) = 0
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= pla) ula) v'(a) + p(a) v(a) u'(a)

——
u(b) v(b)
p(b) u(b) v’ (b) p(b) v/ (b) v(b)
this term this matches the term right above it
cancels the with difference in sign only

one above it.  thus these two terms add up to zero.
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Ut = ku:v:v + Vou,

a.
u=XT
XT = kTX" + Vo X'T
T/ B Xl/ %Xl B )\
kKT X E X
X”+%X’+/\X:0

The two terms in the box should be combined into one in order to have the equation in

Sturm-Liouville form.
b X' 4+ Y X/ — (¢FrX) e e
(Recall integrating factors!)
Thus the equation becomes
(€T XY + e X =0
This is the Sturm-Liouville form with

Yo
Lz

p=et’; q=0; o=ce¢

Yo
2z
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4c. To solve the initial value problem we have

X”+%X’+)\X:O

Try X = et”
v
A 2 u =0
k
2
R (%)—4)\__Ei <E>2—/\
H= 2 Y 2k

2
If (g—g) — A > 0 the solutions are real exponentials which with the boundary conditions

2
yield a trivial solution. Similarly for (g—g) = A, since X = e (Az + B) which again

is trivial when using the boundary conditions.

2 2
If(%) — A < 0 then let A? = \ — (212)
The solution is X = e~ ? (A cos Az + B sin Ax)

Using the first boundary condition we get

Thus the second boundary condition gives
X(L)=0=e¢#LBsin AL
= AL =nnm n=12 -

=0 - (2 = (%) a=12-

Vo\ 2 n\?2
T () e
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Using these eigenvalues in the T equation:

T + M kT =0

we get
T _ 67)\" kt
=
Thus
> v nm
u(z, t) = > b,e Mk e~ " sin Sk (%)
n=1
Use the initial condition:
> v nm
flz) = > bpe 2 sin —
n=1 L
This is a generalized Fourier series of f(x)
J& f(x) e~ #? sin T rd
bn - L Y, . 2npr (#)
Jo e ® ¥ sin” 2Exdx

The solution is given by (*) with the coefficients by (#), and A, in the box above.
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6.4 Linearized Shallow Water Equations

Problems

1. Find the second solution of (6.4.13) for a(c) = —n.
Hint: Use the power series solution method.

2.
a. Find a relationship between M (a,b; z) and its derivative %.
b. Same for U.

3. Find in the literature a stable recurrence relation to compute the confluent hypergeo-
metric functions.
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6.5 Eigenvalues of Perturbed Problems

Problems
1. The flow down a slightly corrugated channel is given by u(z,y, €) which satisfies
Viu = —1 in |y| < h(x,e) =1+ ecoskx

subject to
u=>0 ony = th(z,e€)

and periodic boundary conditions in x.
Obtain the first two terms for w.

2. The functions ¢(z,y, €) and A(e) satisfy the eigenvalue problem
¢xw+¢yy+)\¢zo n OSI‘ST(, 0+€x(77_x)gygﬂ-

subject to
=0 on the boundary.

Find the first order correction to the eigenpair
¢§0) =sinxsiny

A =2
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7 PDEs in Higher Dimensions

7.1 Introduction

7.2 Heat Flow in a Rectangular Domain

Problems
1. Solve the heat equation
ue(2, Y, t) = K (Uaw (2,4, 1) + tyy (7, 9, 1)),
on the rectangle 0 < x < L,0 < y < H subject to the initial condition
u(z,y,0) = flz,y),

and the boundary conditions

a.
U(O, Y, t) = ux(La Y, t) = 07
u(z,0,t) = u(z, H,t) = 0.
b.
uac(oa Y, t) = U(La Y, t) = 07
uy(z,0,t) = u,(z, H,t) = 0.
C.

u(0,y,t) =u(L,y,t) =0,
u(x,0,t) = uy(x, H,t) = 0.
2. Solve the heat equation on a rectangular box
O<z<LO0<y<HO<z<W,

w(x,y, 2,t) = k(Ugy + Uyy + usz),

subject to the boundary conditions
’U/(O’ y? Z? t) = u(L7 y’ Z? t) = 07

u(z,0,2,t) =u(x, H,z,t) =0,
u(x7 y’ 07 t) - u(x7 y7V[/)t) 07

and the initial condition
U(.T, Y, %, 0) = f(xa Y, Z)'
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YT = kYX"T + kXTY"

T X// y"
Iy
kT X + Y
. X Y
T AT =0 R W —
* X Y H
X"+ pX = Y'"+ (A= pY =

n— i n— 4
= X,, = sin ( LQ) x W = ( LQ) n
~Y, mr A (mwf 1,2
nm — sin —— nm — HMn = I n =1,z
I Y 2 H
2
1
)\ _ (n — 5) s
Tnm _ Anmkt
> = 1\ 7 mm
“Anmkt I WL L)
u(z,y,t g;anme sin (n 2) Lxsm 7 Y

o0 o0 1
fla,y) = u(z,y,0 g z: 4y Sin (n _ 5) %mn%y

mTm

B Iy f@ gy sin (n = ) Fasin 22y dady
N fOH fOL sin? (n — %) T sin? LEydrdy
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X, = cos (n _L%) s [y = (n _L%) ™
2
Yo = cos %x Aum = (n _L%) oo (%)2 n =
0,1, 2,

oo

—1 0o oo
u(z,y,t) = Y %ano o kAot g Mx—i— S S e FAmt ¢

L

=l m=1 n=1

B JE T f(x, y) cos (n — %) % x cos By dxdy

W o (r— 1) £ cot B ety

n =1

anm
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u(w,y,t

G

nm

(m
sin &% z sin

—kAnmt o3

TLTI'

nm .
SIn — I SIn
L

)~

l\)l»—l

ydy dx

foL f({{ sin?

n
L

DT 1 sin

2

1
%ydydw
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2. up = k(U + Uyy + Us)
TXYZ = kT(X"YZ + XY"Z + XY Z")

T X Yy A

LA S
kT X+Y+Z
. X// Y// Z//
T+MI=0 “=-2- -2 _\=_
+ X Y  Z K
Y// Z//
X"+ puX = ———7—)\+,u:—u

Y+ Y =0
Y(0) = Y(H) =0

Z" + (X — v)Z =0

Lpme = Sin %z At = (%)2 + (%)2 + (%)2 0 =1,2 ---

inp ..onm omm AT
nmé smfxsm—ysm—z

H w

M]3
M]3

u(z,y, z,t) Z

n=1 m

Qpme €

1 ¢=1

Sy f(x y, z) sin %% x sin "y sin —zdzdydm
Anme = 2

foJot l"

n7r 2 mmw 2 4r
T sin® "y sin® 3 2 dz dy dx
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7.3 Vibrations of a rectangular Membrane

Problems
1. Solve the wave equation
U (7, Y, ) = & (g, Y, t) + uyy (7,9, 1)),
on the rectangle 0 < x < L,0 <y < H subject to the initial conditions
u(z,y,0) = f(z,y),

ut(xa Y, O) = g(:l:, y):

and the boundary conditions

a.
u(0,y,t) = u.(L,y,t) =0,
u(z,0,t) = u(z, H,t) = 0.
b.
u(0,y,t) =u(L,y,t) =0,
u(z,0,t) = u(zx, H,t) =0
C.

ux(O,y,t) = ’LL(L,y,t) = 07
uy(z,0,t) = u,(z, H,t) = 0.

2. Solve the wave equation on a rectangular box

O<zez<LO0<y< HO<z<W,

utt(xa Y, =z, t) = C2(“:m: + Uy + U/ZZ)7

subject to the boundary conditions
uw(0,y, z,t) =u(L,y,z,t) =0,
u(z,0,2,t) =u(x, H,z,t) =0,
u(x’ y’ 07 t) - u(x7 y7 W t) - 07

and the initial conditions
u(z,y,2,0) = f(z,y,2),

Ut(%ya 270) = g(x,y,z).
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3. Solve the wave equation on an isosceles right-angle triangle with side of length a
(2, y,t) = A (Uge + Uyy),

subject to the boundary conditions
u(z,0,t) = u(0,y,t) =0,

u(z,y,t) =0, on the line r+y=a

and the initial conditions
u(z,y,0) = f(z,y),

uy(,y,0) = g(z,y).
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Louy = & (Uge + Uyy)

TXY = AT (X"Y + XY")

T X// Y
= —)\
02T X + Y
.. X// Y//
T+MT =0 —=-%—-X=-
+ Ac % v "
X" 4+ pX = Y'"+ (A= pY =0

as in previous section

1
u(z,y,t z:: 2:21 {anm cosc\/ Apmt + bpm SIn c\/)\nmt} sin — 7

Initial Conditions
f(l', y) = U(ZE,y,O) = Z Z (pyp, SID ( 2) T sin mﬂ.y ylelds Apm
n=1 m=1 L H
foH foL f(z, y) sin (n - %) Txsin B ydx dy
Anm =
I' Jy sin ( — %) % 2 sin® %Xy dx dy
o0 o0 1
g9(z,y) = w(x, y,0) = > Y cy/Aum by sin (n — _)fx sin my
n=1 m=1 2 L H
L rH 4 (n—%) mm
; Iy Jo gz, y) sin 7= x sin "ty dy dx

e SEH sin? (n — ) Fasin® 2Ly dyde
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Yom = sin ZFy A = (”—;)2 + (%)2 m=12, -

nm .o mT

u(x,y,t) = Z Z {anm cos c\/ Apmt + by SIN c\/)\nmt} sin ng sin ?y

n=1 m=1

nm .o mT

[z, y) = z:: z::anmsinfxsm?y

— . nm . mm
9(z,y) = Z Z c\/ Anm b, SIND @ s —ry

Gpm 5 bpm in a similar fashion to part a.

ST f f(x, y) sin 0 @ sin Ty da dy

2m7r

ot Jy sin? 2 x sin® oy da dy

nm —

b fo fo g9(z, )Smmﬂ?smmydydx
" vV Anm fo 0 sm2ﬂ:1: sin? Iy dy dx
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c. see 1lbin 7.1

X,, = cos (n _L%) Wx My = (n _L%) i n=1,2,
2
Y,m = cos %y Am = (n _L%) i + (%)2 m =

s _ 1
u(z,y,t) = Z {anO cosc\/)th + by sin c\/)th} cos #

n=1

+ Z {anm cosc\/ Apmt + bpy sin Cw/)\nmt}cos(n%
m=1

n=1
f(z, y) yields ang, Gpm

g(x, y) yields bno, bum
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2. Since boundary conditions are the same as in 2 section 7.1

o0 (o0} o0 g
u(z,y,z,t) = Z Z Z {anmz coS c\/ Apmet + bpme SIN C\//\nmgt}sin n%x sin %y sin WW z

n=1 m=1 /=1

f(l‘7 Y, Z) y1€ldS Apme
Jo Jot Y (@, y, 2) sin 22 sin 22y sin 42 2 dz dy d

Apme — - -
. Jo St Sy sin® 2T sin® My sin® LT 2 dz dy da

g(z, y, z) yields byme

b . foL foH foW g(x, y, z )sm—x smmysm—zdzdydx
e N Dme J [ [ sin? AE z sin® Xy sin® %zdz dy dx
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3.
See the solution of Helmholtz equation (problem 2 in section 7.4)

Upm(z,y) = sinz(m—l—n)x sin zny — (=™ sinz(m+n)y sin “na
a a a a

7r
)\nm:— 2 2 , :1’2,-~-
a\/(m+n) +n n,m

The solution is similar to 1b

oo

uot) = 32 5 aun €05y At + b 50 ey Nt} Yuna.1)
n=1 m=1

Gnm > bpm 10 a similar fashion to la.
o = B T ) V) drdy

b fO Jo 9z, y)¢nm(x y) dy dx
" Cv )\nm fO fO nm('x y) dy dx
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7.4 Helmholtz Equation

Problems
1. Solve
V2 + Ao =0 [0,1] x [0,1/4]

subject to

¢(0,y) =0

¢x(1,y) =0

¢(z,0) =0

¢y(z,1/4) = 0.

Show that the results of the theorem are true.
2. Solve Helmholtz equation on an isosceles right-angle triangle with side of length a
Ugg + Uyy + Au =0,
subject to the boundary conditions
u(z,0,t) = u(0,y,t) =0,

u(z,y,t) =0, on the line T +y=a.
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1/4
¢=0 ¢,=0

Figure 58: Domain fro problem 1 of 7.4

1.
o(r, y) = XY

X"Y + XYY" + AXY =0

X" Y
X~ Ty o
X"+ pX = Y'+ A=Y =0
X(0) = X'(1) = 0 Y(0) = Y'(1/4) = 0
U Y
X, =sin(n — )7z Yom = sin(m — 3)4my
o = [(n = 3)n]’ M = [(n = D] + [(4m — 2) )’
n=1,2, m =1, 2,
pm = sin(n — 3) 7wz sin(4m — 2) 7y

Aom = [(n = 3)7]* + [4m — 2) @)? n,m=12, -
Infinite number of eigenvalues

A1 = in + 47?2 is the smallest.

There is no largest since \,,, — 00 as n, m increase
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Figure 59: Domain for problem 2 of 7.4

2.

The analysis is more involved when the equation is NOT separable in coordinates suitable
for the boundary. Only two nonseparable cases have been solved in detail, one for a boundary
which is an isosceles right triangle.

The function
umxr . UT

sin —y
a a

sin

is zero along the = and y part of the boundary but is not zero along the diagonal side.
However, the combination

vm
a

y F sin EXy sin o

sin 47 ¢ sin
a a

is zero along the diagonal if  and v are integers. (The + sign is taken when |y — v| is
even and the — sign when |y — v is odd).

The eigenfunctions
T T T T
Umn (2, y) = sin —(m + n)xz sin —ny — (—=1)™ sin — (m + n)y sin —nzx
a a a a
where m, n are positive integers.

The only thing we have to show is the boundary condition on the line z + y = a. To
show this, rotate by 7/4

1
if:%(f—ﬁ)
y=E+n)



sinz(m—l— 2n)§sinzmn — sin Z(m + 2n)nsin Zm¢ m =24, -
« a

wmn =

COSE(m + 2n)n COSEmf — cos T (m+2n){cosTmn m=1,3, -
a a

= Umn = 0 for £ = /2 whichisz + vy = a.

The eigenvalues are:

A = (%) (/(m + n)? + n?
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7.5 Vibrating Circular Membrane

Problems

1. Solve the heat equation
uy(r, 0,t) = kV2u, 0<r<a0<f<2mt>0
subject to the boundary condition
u(a,d,t) =0 (zero temperature on the boundary)
and the initial condition

u(r,0,0) = a(r, ).

2. Solve the wave equation
U (r,t) = (U + %ur),
ur(a,t) =0,
u(r,0) = a(r),
u(r,0) = 0.
Show the details.

3. Consult numerical analysis textbook to obtain the smallest eigenvalue of the above
problem.

4. Solve the wave equation

uy(r,0,t) — AV = 0, 0<r<a0<<2m,t>0
subject to the boundary condition
ur(a,0,t) =0
and the initial conditions
u(r,0,0) =0,

u(r,0,0) = [(r) cos bb.

5. Solve the wave equation
utt(r,Q,t)—c2V2u:0, 0<r<a0<6@<n/2,t>0
subject to the boundary conditions
u(a,0,t) =u(r,0,t) = u(r,m/2,t) =0 (zero displacement on the boundary)

and the initial conditions

u(r,0,0) = a(r, ),
u(r,0,0) = 0.
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1. uy = kV3u

0<r<a
u(a, 0,t) =0 0<60<2r
u(r,0,0) = a(r, d) t >0
TRO = kT [01(rRY + % RO"|
T 1 ., 1o
- R TR T A
T+ kAT =0 %(TR’)’—F%:—)\TQ
%(TR’)’-F)WJ —% =
O +u0 =0 r(rR)Y + (M —p)R=0
©(0) =062 |R(0)] < o0
©'(0) = 0 (2n) R(a) =0
4 Y
fm = m? R, = Cim Jm (VAT) to satisfy | R(0)] < oo
sin m 6
O, = m =1, 2,
cos m 6
Rm(\/Xa) Cme(\/Xa) =0
po =0 ¢
©p =1

Anm  are solutions of I (\/X a) =0
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3 - L ey (Ao)
n=1 :90

m=0

o0

a(r, 0) = Z ano Jo (\/ Ano ) + Z (Gpm cOs MO + by sin mO) Iy (\V A7)
n=1

m=1 n=1

2T 19 oy (r, 0) Jo (v Ao ) rd rdd

0 = T R (o ) rd 6

A 29 (r, 0) cos MmO Jp (v Aum ) rdrdd
e 279 cos2 m O J2 (v Aum ) rdrdd
I oS a(r, 0) sin m0 Jy, (VA ) rdrdd

2T 9 sin® m @ J2 (v Aum ) rdrdd
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2. uy — (U + %ur)

ur(a,t) =0
u(r,0) = a(r)
ug (r, 0) = 0

. 1
TR— (R + -R)T =0

T R +.FR

2T R -

.. 1

T+ 22T =0 R+ ~-R +)MR =0
%,T_/

! (rR)Y + AR =0

-
multiply by r?

r(rR)Y + Ar*R =0

| R(0)| < oo

R'(a) =0

This is Bessel’s equation with 4 = 0
= R, (r) = Jo(\ A7)
where A, J) (v A, a) = 0

gives the eigenvalues A,

u(r,t) = Z {an COS \//\Tlct + b, sin C\/)Tnt} JO(\/)TRT)
n=1

amzi%mﬁm

o I a(r) Jo (VA1) rdr
Th Ids a,. = a, =
is yields a a 2 (o) rdr

0= wu(r,0) = Z C\/rnano(\/rnT) = b, =0
n=1
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4 uy — AV =0
u (a, 0,t) =0
u(r,d,0) =0

ug (r, 0,0) = B(r) cos 50

\
T+ 22T =0 0"+ u =0 r(rRY + Ar? — u)R =0
T0)=0 ©0) =062 |R(0)] < o0
©'(0) = 0 (2n) R'(a) =0
T = acos c\/ Ayt [}
+bsin eV t o = 0 Oy =1 R:Jn(\/xr)
Since T(0) = 0 R(a) = J,(VXa) - VA =0
=t O = { G0
\ \
T = sin cv Ay t Ao =0
or
T (VAma) = 0
m=12, -

foreachn = 0,1, 2, ---

oo o0

u(r,0,t) = Z Z { @pm cos N + by, sin nf} {Jn(\/)\nmr)} sin ¢/ Ay t

m=0 n=0

u (r, 0, 0) = Z Z { pm cos nO + by sin n @} J, (\/ Aum ™) €\ Aum €0S €/ A T
m=0 n=0 N————

=1 att=0

Since w(r,0,0) = B(r) cos 56 all sin n 6 term should vanish i.e. b, = 0 and all a,, = 0
except as (n = 5)

B(r) cos 50 = Z Asm €08 50 J5 (\/ A5 ) €A/ Asm

m=0

227



This is a generalized Fourier series for 3(r)

\//\7 Jo B (1) J5 (/A ) dr
asm C 5m —
Jo JZ (/A5 ) rdr

u(r, 0, t) = Z A5 €08 50 J5 (\/ A5 1) sin ¢/ Mg t

m=0

where Mg, can be found from

\//\5m Jé (\/A5m CL) =0
and as,, from

_ Jo B (1) J5 (\/Asm ) rdr
cAsm Jo J2 (\/ Asm ) rdr

As5m
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5 uy — 2V2u =0
u(a, 0, t) =0
u(r, 0,t) = u(r,7/2,t) =0
T+ XAT =0 0"+ u =0 r(rRY + Ar? = u)R =0

00)=06(x/2)=0 |R(0)]| < oo

R(a) =0
\
fin = (2n)° Y
0, = sin 2n6 R(r) = Jop (VA2nmT)

n=12:- Jon (W A2mma) = 0m = 1,2, ---

u(r, 0, t) Z Z n Jon (W A2n,m ) sin 2n.6 cos ¢ /Aoy, m t

m=1 n=1 —
sinceut (r,60,0) =0

g(r, 8) = u(r, 6,0) Z Z n Jon (\/A2n,m T) sin 2n 6
W/Q Jon (\/A2n,mT) g ) sin 2n@rd0dr

amn
N/Q IS Jgn /A on.m ™) sin? 2n0rdrdo
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7.6 Laplace’s Equation in a Circular Cylinder

Problems

1. Solve Laplace’s equation

1 1
—(rup ), + —uge + uz. =0, 0<r<a0<f<2r,0<z2< H
r r

subject to each of the boundary conditions

a.
u(r,0, H) = u(a,0,z) =0
b.
u(r,0,0) = u(r,0,H) =0
ur(a,0,z) =~(0,z2)
c.
u,(r,6,0) = a(r,0)
u(r,0, H) = u(a,0,2) =0
d.

u(r,0,0) = u,(r,0, H) =0
ur(av 0, Z) = 7('2)

2. Solve Laplace’s equation

1 1
—(rur)r—l——?ueg—i-uzzz(), 0<r<al0<f<m0<z<H
r r

subject to the boundary conditions

3. Find the solution to the following steady state heat conduction problem in a box
Vu =0, 0<z<L0<y<LO0<z<W,

subject to the boundary conditions
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)
Y0, r=0x=1L,

o=
ou
ay ) y 7y Y
u(z,y, W) =0,
3 4
u(z,y,0) =4 cos %x cos %y.

4. Find the solution to the following steady state heat conduction problem in a box

Vu =0, 0<z<L0<y<LO0<z<W,

subject to the boundary conditions

% =0, r=0,z=1L,
Z—Z =0, y=0,y=1L,
us(z,y, W) =0,
u,(z,y,0) =4 cos 3%3: cos %y.
5. Solve the heat equation inside a cylinder
%z%%(r%)Jr:—Q%Jr%, 0<r<a 0<0<2r,0<z< H

subject to the boundary conditions

u(r,8,0) = u(r,0, H) =0,

u(a,d,z,t) =0,
and the initial condition

u(r,0,2,0) = f(r,0,z).
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1
1. (T’ur),« + T—2U99 + uy,, =0
(a)
0"+ 10 =0 7" - \NZ =0 r(rR) + Ar* = p) R =0
©(0) =6 ((2mr) Z(H) =0 |R(0)] < o0
©(0) = 6'(2m) R(a) =0
J \
,U/()—O an:‘]m(\/)\nmr>
Oy 1 satisfies boundedness
Hm = m?
sin m 6
Om
cos m 6
I (VAnma) = 0
yields eigenvalues
m=12,--- [} n=12 ---

A > 0!

Znm = sinh /Ay (2 — H)

vanishes at z = H
u(r,0,z) = Z Z U €08 MO + by, sin m @) sinh \/ A (2 — H) Jp (W A 1)
m=0 n=1

T

This is zero for m = 0

a(r, 0) = i

Z (G €08 MO + by sin mO) sinh \/ A, (— H) Ty (VA7)
m=0 n=1

this is a constant

. J& 2 a(r, 0) cos m O Jpy (A ) 7d6 dr
" sinh g (— H) [& 2 cos? m 0 J2, (v Apm 1) Td0 drr
b — Jo 027r a(r, 0) sin m0 Jy, (v Apy 1) rd0 dr

sinh /A (— H) [& J27 sin? m 0 J2, (v/ Apm ) 7d6 dr
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1 b.

0" +u0 =0 Z" —\NZ =0 r(rR)Y + Ar: = p)R =0
Z(0) = Z(H) = 0 [ 72(0)] < o0
Y Y Y
Ly = > Zp = sin 5F 2z
sin m 6 )
On = M=~ ()
cos m
2
m=1,2,--- T(TR/),+<—<E> T2—m2>R
H
po = 0 T

extra minus sign

u(r,0,2z) = > > (anm cos mO + by, sin mo) sin %z I, (%

)
-
N———

ur(a, 0, 2) =v(0,2) = > Y (anm cos mb+ by, sin mb) sin nm_onTp (”_Wa>

m=0 n=1 H H m H
constant
W T (Ea) _ 3" S v (0, 2) cos m 6 sin LE 2 dzdf
" H ™\H 2m [ cos? m @ sin? o zdzdf

2” fOH v (0, z) cos m 8 sin 5F zdz d

Apm =
o (H
m[' (M ) o Jo cos2m951n nE zdzdf

027T foH v (0, z) sin m@ sin % z dz df
SR (m a) 7 S sin? mo sm2 LI 2 dzdf

bnm -
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O+ u0 =0

Solution as in la exactly !

But
u,(r,0,0) = a(r, ) = Y
m=0
A \/ Anm €Osh A/ A (—
"o alr

7" —\NZ =0 T(TR’)’+()\T2_M)R:O
Z(H) =0 |R(0)] < o
R(a) =0

(G €08 MO + by, sin m0) Ty (A A 7) A/ A cOsh A/ Ay (—H)

n=1

7 fea(r, 0) cos mO Jp (VA1) rdrdd
2T cos? m B J2 (VA ) rdrdf

0) cos m O Jp, (v Apm 1) rdrdl

flnm. = vV Anm cosh VA (—

H) [Z7 [& cos? m O J2 (v Apm 1) rdrdf

o Joa(r, 0) sin m 6 Jy (v Aum ) rdrdd

bnm
VAum cosh v/ A, (—H

) JZT [ sin? m 0 J2 (v Aam ) rdrdo
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1d.

" +pu0 =0 Z" —\NZ =0 rirRY + Ar* = p)R =0
I Z(0) = Z(H) =0 |R(0)] < oo
Y Y
as before M= = [(n— 1) 2]

X = . . 1N = 1\
u(r, 0, z) = Z Z (@pm €08 MO+ by, sin M) sin (n — 5) ﬁzfm ((n — §>ET)

m=0 n=1
0, Y 8 + bum sin m0) si ( 1) i ( 1) i
(a,0,2) = > > (apm cosm wm sinm) sin (n — 5}z (n—g)5

m=0 n=1 1
B ((n-3)
m n 2

Since u,(a,0,z) = v(z) is independent of 6, we must have no terms with € in the above
expansion, that is b,,, = 0 for all n, m and a,,, = 0 for all n,m > 1. Thus a;9 # 0

. m
1= s e 1 ()

H .
A Jo' v (2) sin 757 2 dz
U s (na J sin? & 2 dz
2H "0 \2H 0 2H

And the solution is

. s
u(r,0,z) = ayo sin QHZIO <2H >
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Z"+XZ =0 0"+ u® =0 r(rRY + Ar> = )R =0

Z0) =0 ©0)=06(r) =0 |R(0)] < o0

Z'(H) =0 \

Y

Z, = sin (n — %) & ©,, = sin m6 T(T’R/)/—{[(n — %) %}2 r? + m2} R
,Um:m2

wel-E mea w0y = 1o (=) 77)

n= -5 g m =1, 2, r)=In(ln-35) g7

n =1, 2,

009 5 B - ) ) omren o 1) 5

u(r, 0, z) = CmnIm (0 = 5 ) r)sinmbsin (n — o) 2

1IN =« 1

B0, z) = i i Conm I <<n - 5) ﬁa> sin m 6 sin (n — 5) T?

coefficient of expansion

I 36, 2) sin m 6 sin (n—% Z zdzdf

o = I, ((n - %) %a) JT 3 sin? m 6 sin? (n — 1) £zdzdf

236



3. Upy + Uy + Uy, =0 BC: wu,(0,y,2) =0
uz (L, y, z) =0
uy (z, 0, 2) =0

uy (z, L, z) =0

3 4
u(z,y,0) = 4 cos %xcos %y
u(r,y, z) = X(@)Y(y)Z(2)
X// Y// Z//
TSI
X + Y + Z
X// Y// Z//
= T = — )\
X Y A
X"+ 2\X = 5
= = (%)
BC: X'(0) = X'(L) =0
X, = cos “Fuw n=20,1,2
Y// Z//
Y+ uY =0 5
= = ()
BC:Y'(0) =Y'(L) =0
Yo =cos Fy m=20,1,2-

Z" =N+ pwZ =20 e 2 e 2
L o= () ()] 2 -
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general solution

00 [ee] 2
u(z, y,z) = Y. > Ay cos n%:z: cos %ysinh \/(n%r) + (

m=0 n=0

o] 00 2
u(z, y,0) = > > — A, cos n%xcos %y sinh \/(%T) + (

m=0 n=0

But u(z,y,0) = 4 cos 3Tz cos Ty

Comparing coefficients
Apn = 0 form #4 orn # 3

972 1672
Forn =3, m =4 — Ay3 sinh %—i—LZW:ZL

— Ay3 sinh %W =4

4
Ay = — ——F——
43 sinh‘%’rW
4 3 4 )
u(z, y, z) = —m cos %x cos %y sinh%(z - W)
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4'uacac + U/yy + uzz = 0

239

uy($7 07 Z) =0

u(x, y,

u(z, y, 0)

L

= COS MfL‘

= COS My

47

7
= 4 cos— x cos — ¥

L

0,1,2 -

0,1,2 -



u(z, y, z) = Ao + Y, Amo cos %y cosh % (z — W)

m=1

+ Z Ap,, cos n%x cos cosh n%r (z — W)

n=1

o0

00 2 2
+ > > Ay cos %xcos%ycoshV(%) + (m) (z — W)

m=1 n=1 L

[e.o]

mm mm mm
u,(z,y,2) = Y — Apo cos — ysinh — (z — W)
2T L L

+ Z AOn cos n; x sinh n—; (z — W)
n=1

achG 2 mm 2 nm mm nm\?
+ Z Z\/( > (T) An COS Tzcos Tysmh \/<T)

m=1 n=1

Atz =0 uz(m,y,O):—ZAmo% cos%ysinh%w
;Aon—COS%J,‘Slnh%W
ii\/( )2 (m)214 CSE cosm 'h\/(m)2+(
2 7 mn CO8 —~ 7Y sin 7
3 4
But u,(z,y,0) = 4 cos%x Ccos %y

Comparing coefficients A,,, = 0 forn # 3 or m # 4
om om

Forn = 3 and m = 4 we have 4 = _TA43 sinh TW
4
Ap = —+——
43 —” sinh 5” w
Note that Agy is NOT specified.
4 3 4 5
u(x,y,z):Aoo—Wc gxcos%ycosh%(z—W)
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1 1

5 u; = ;(Tur)r + 7“_2u69 + Uy,

BC: u(r,0,0) =0
u(r,d, H) =0

u(a,0,z) =0

u(r, 0, z,t) = R(r)©(0)Z(2)T(t)

rozT = LezT(r
T

R + %RZT@” + ROTZ"

T l(?“ R/)/ 1 @// YAl
T R ez
Z// T/ 1 R// "
zn _ T GeR)Y 1o
Z T R r2 ©
7"+ \NZ =
BC: Z(0) = 0
Z(H) = 0
a2
Zn:sin%z
2
)\n:(%) n=1,2-
1O T 1ERY oy
20 T r R H
o 1", r(rRY) nm\% ,
e 7" TR +(ﬁ) Te
0"+ 0 =0

BC: ©(0) = ©(2m)

0'(0) = ©'(2n)

4

241



Hm =
T  L(rRY (mr 2 m?
T~ R H 2 =Y
|T" + vT = 0]
%(TR/)/ N (mr)Q N m?
= —yU _ o

R H 72

r(rR')

2
= —vr? + <@> r? 4+ m?

R H

r(rR) — (v — (M)Q)T2R—m2R =0

H

BC: |R(0)] < o0

R(a) =0

nm\ 2
ané - Im( Vp — <F> T)

This solution satisfies the boundedness at the origin. The eigenvalues v, can be found by
using the second boundary condition:

nm\ 2
Since the function 7,,(z) vanishes only at zero for any m = 1,2, - - - (Ij is never zero) then
there is only one v (for any n) satisfying

nm\ 2
_ (¥ — 0 —1.9 ...
v (H) a m .2,

(%)
vV = |(—
H
mr)?t

The solution fot T"is T}, = e~ (5

The solution for R is I,,,(0-7) which is identically zero. This means that u(r, 6, z,t) = 0.
Physically, this is NOT surprising, since the problem has NO sources (homogeneous boundary
conditions and homogeneous PDE).
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7.7 Laplace’s equation in a sphere

Problems

1. Solve Laplace’s equation on the sphere

2 1 cot 6 1
Upp + ;UT + ﬁU@@ + 71]@ 72011,9090 = 0,

o 0<r<a, 0<f<m 0<p<2m,
< S1n

subject to the boundary condition

ur(aa 0, @) = f(0>

2. Solve Laplace’s equation on the half sphere

1 cot 8 1

2
urr_}_;ur_}_ﬁu%’_}_?ue mu(p(p:()g 0<r<a 0<f<m 0<p<m,

subject to the boundary conditions

u(ga 0, @) = f(ea 30)7

u(r,0,0) = u(r,0,7) = 0.
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L. ’LL(?", 97 90) = Z An(]?"npn (COS QO)

n=0

oo o0

+ D > "B (cos @) (App €08 My 4 By sin mp)

n=0 m=1

(7.7.37)

Uy (av 07 90) = f(e) =

= > nAya* " P,(cos 6)

n=0

+ > > na" "t P (cos 0) (Apm cos mp + By, sin m)

n=0 m=1

v Jo f(8) P, (cos ) sin 6 dO

Apna™! =
orna Jo P2 (cos ) sin 6 df
a1 A — ST 2™ £(0) P (cos 6) cos m g sin 0 dp df
" N 02” [P (cos 6) cos mp]? sin 6 dp df
a1 B — [T [2™ £(0) P (cos 6) sin m o sin 6 dyp df
o I 02” [P (cos 6) sin m p]? sin 0 dp df
. JT JZT £(0) P (cos 6) cos m @ sin 0 dp df

nat [ 02” [P™ (cos ) cos mpl]? sin 0 dy df

ST JE £(0) P (cos 6) sin m @ sin 0 dp df

Bpm =
nar=1 [T [27[Pm (cos 6) sin m ]2 sin 0 dip df
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= u(r,0,0) => > 1" P"(cosb) A,y sin me

e equation

|

R equation
u(a, 0, p) = f(0, p) = Z Z " Ay P (cos 6) sin m g
Jo Jo f(8, ) P (cos 0) sin mp sin 0 df de
—_———

av A, = area elem.

J5 Jo (P (cos 0))2 sin® m o sin 0 df dyp

I Jo f(8, 9) P™(cos 6) sin m sin 6 df dyp
—

_ area elem.
Anm -

am 5 f5 (P (cos 6))2 sin® m ¢ sin 0df dy

(r, 0, ¢) = > > r"P"(cos 0) Ay sin m

n=0 m=1

245



3. The equation becomes
1
qu—l-COtHUQ—l-,—QQuW,:O, 0<f<m0<ep<2m
sin

Using separation of variables

1

sin’ @

O"® + cot HO'P + 0P =0

Divide by ®© and multiply by sin?# we have

@// @/ (b//
sin? 6’5 —|—cos€sin06 =—3 —H

Thus
" + pd =0
sin? 00" + sinf cos Q" — 1O = 0
Because of periodicity, the ® equation has solutions
sin - mey m=1,2, ...

d,, =
cos mep

@0:1
o = M* m=0,1,2, ...

Substituting these u's in the © equation, we get (7.7.21) with a; = 0. The solution of the
© equation is thus given by (7.7.27) - (7.7.28) with oy = 0.
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8 Separation of Variables-Nonhomogeneous Problems

8.1 Inhomogeneous Boundary Conditions

Problems

1. For each of the following problems obtain the function w(x,t) that satisfies the boundary
conditions and obtain the PDE

: wp(z,t) = kg, (x,t) + x, O<z<lL
u.(0,t) =1,
u(L,t) =t
b.
up(z,t) = kg, (x,t) + x, O<z<L
u(0,t) =1,
ug(L,t) =
c.
wp(z,t) = kg, (x,t) + x, O<z<lL
ug(0,t) =t,
uy(L,t) = t*

2. Same as problem 1 for the wave equation
utt—CQum:xt, O<ax< L

subject to each of the boundary conditions

a.

u(0,t) =1 u(L,t) =1t
b.

u,(0,t) =t uy(L,t) =t
C.

u(0,t) =0 u.(L,t) =t
d.

u,(0,) =0 u(L,t) =1
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la. u,(0,¢) =1
u(L,t) =t
w(z, t) = A(t)r + B(t)
1= w,(0,t) = Alt) = A(t) =1

t =w(l,t) = A(t)L + B(t) = B(t)=t—-1L

b. w = Az + B
1 =w(0,t) = B(t)
1 = w,(L, t) = A(t)
w=x+1
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c. wy(0,t) =t
we(L, t) = ¢
try w = A(t)x + B
w, = A(t) and we can not satisfy the 2 conditions.
try w = A(t)2* + B(t)=x
w, = 2A(t)z + B(t)
t = w,(0,t) = B(t)
2 = wy(L, t) = 2A(t)L + B(t) = A(t) = £=¢

2L
=t
F oty
w = xz X
2L

v, + (2t221x2 + x) = k(vgp + t2L_t) +

2t — 1
v = kvgy — —— 2% —z + k

+x

ot — 1 2 —t
33'2

vy = kvg, —
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2 _ .
cw =5t ot as in lc
1..2
Wit — ZZ'
2 —t
wacac - L

L
Uy — Py = — 7T + c“QT’t + at
w(0,t) =0 wy(L, t) =t

w = Ar + B w, = A
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A(t) =
1 2
w = ﬁl‘
wtt:(] wm:%

v =u+w

vy — 2 (vm + %) =t

2 C
Utt_CUm:—i-——i—xt
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8.2 Method of Eigenfunction Expansions

Problems

1. Solve the heat equation

subject to the initial condition

and each of the boundary conditions

a.

2. Solve the heat equation

subject to the initial condition

and the boundary condition

Uy = kumx +z,

Up = Ugy T € 7,

u(z,0) = cos 2z,

u(z,0) = z(L — x)

O<z<L

u.(0,t) =1,
u(L,t) =t.
u(0,t) =1,
u(L,t) =1
ug(0,t) =t,
ugy(L,t) = t*
t O<z<m t>0,
O<z<m,

uz(0,t) = uy(m,t) = 0.
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1. w = kugy + x

u(z, 0) = (L — x)

a. uz(0,t) =1
= w=x+1t—-L

u(L,t) =t

Solve v, = kvy, — 1 + 2 (see la last section)
v,(0, ) =0 v(x,0) =2(L —z) —(r — L) =(x+1)(L — x)
v(L,t) =0
eigenvalues: [(n — %) %r n=12---
eigenfunctions : cos(n — 3)Tw n=12---

v o= ivn(t) cos <n — %) %x

=1

3

B J& (=1 + z) cos (n - %) Tadr

> 1\ 7
—14+x = sncos<n——) —-—r = Sn

nz::l 2/ L JE cos? (n - %) Txdr
nz::l@n(t)cos (n— 5) %l‘:/ﬂnz:l{— [(n— 5) %} }vncos (n— —) %x

> 1\
+Z sncos<n—§> Zm

n=1
Compare coefficients

bu(t) + b ((n— )

2
)vn:sn

B

Uy = vn(O)e_[(”_%) TPk o /t o l(n=3) FPk(t-7) 4.
0

see(s. 2. 39)

v,(0) = coefficients of expansion of (1 + z) (L — x)

2

L 2 S N s
Jo~ cos (n 2) Tadr

B J& (1 + 2) (L — x)cos (n - l) Tadr

uUu=v+w

n, (
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1b. u(0,t) = u, (L, t) =1
sw=ux+1

UV = KUggy + T

v(0,t) =0
ve (L, t) =0
v(z,0) =x(L —z) — (z + 1)
2
eigenvalues: [(n — %) ﬂ n=1,2,
eigenfunctions: sin (n — %) T n =1, 2,
> wtysin (n— 1) 7
v = vp(t) sin (n — = | —x
= 2) L
1IN 7 Jo x sin n—%)%xdw
x ansm(n—i)— Sn = —T 3 N
Jo sin (n — 5) Trdr

n=1

(-

1)1
3) 7

vn(t) = v,(0) e ln=3) FPkt Sp L e(

vn(0) = fo[ (L — z) — (2x + 1)]1sinﬂ<n _ 5) x
fo S (n - 5) Trdx

T

Coefficients of expansion of initial condition for v

Uu=v+w
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w = tggzth + itz
Ut:kvm—Tx2_x+k .

00, ) = w(L,t) =0 = A =(%) n

Lol 21,2 2t nmT
_fo{ o o0+ k L}COSLxdx

Sp(t
0 foL cos? nL—ﬂIdx

on(t) = va(0) e CE) 4 Jo $a(7) k() -1 g

1 00
v(z, t) = zvo(t) + > va(t) cos 2N
2 n=1 L
(0) Ji' @ (L — ) cos "Tade
vn(0) =
Jo cos? = rdr
—or Bty
Y
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2. U = Uy, + €7t

O<zx<m, t>0
u(z, 0) = cos 2z O<z<m
ug (0, ) = ug (m,t) =0

Since the boundary conditions are homogeneous we can immediately expand u(z, t), the
right hand side and the initial temperature distribution in terms of the eigenfunctions. These
eigenfunctions are

¢n = COS Nx

n=1
by initial condition
un(0) =0 n # 2
=
¢ > 1
et =) s,(t) cos nx + §So(t)

n=1

Jo et cosnedr et [ cos nxdx
sn(t) = =

Jo cos? nxdx Jo© cos? nx dx

for n # 0 the numerator is zero !!

For n = 0 both integrals yields the same value, thus
so(t) = et

$p(t) =0, n#0

Now substitute wu;, u,, from the expansions for u:

1 o o0 1 o
iuo(t) + ) n(t) cos nz = > (—n?) un(t) cos nz + iso(t) + > su(t) cos nx
n=1 n=1 n=1
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Forn =0
n #0 U, + nlu, =0
Solve the ODES

U, = Cp e un,(0) =0

Uy = —et 4+ 00 Uo(O) =0

u(z,t) =1 —e ' + e cos 2

= Ch—1=0
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8.3 Forced Vibrations

Problems
1. Consider a vibrating string with time dependent forcing
Uy — gy = S(2,t), 0O<z<lL
subject to the initial conditions
u(x,()) = f(l'),
ug(x,0) =0,
and the boundary conditions
u(0,t) = u(L,t) = 0.
a.  Solve the initial value problem.
b.  Solve the initial value problem if S(z,t) = coswt. For what values of w does resonance
occur?

2. Consider the following damped wave equation

Ut — gy + Buy = coswt, O<z<m,

subject to the initial conditions
u(x,()) = f(l'),
ug(x,0) =0,

and the boundary conditions
u(0,t) = u(m,t) =0.

Solve the problem if 3 is small (0 < § < 2¢).

3. Solve the following

Uy — gy = S(2,1), O<z<lL

subject to the initial conditions
U(ZL‘,O) = f(l‘),
ug(x,0) =0,

and each of the following boundary conditions
a.

u(0,t) = A(t) u(L,t) = B(t)
b.

u(0,t) =0 uz(L,t) =0

C.

u.(0,t) = A(t) u(L,t) = 0.
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4. Solve the wave equation

Ut — CPUgy = T, O<z<L,

subject to the initial conditions
u(z,0) =sinz

uy(z,0) =0
and each of the boundary conditions
a.
u(0,t) =1,
u(L,t) =t
b.
ug(0,t) =t,
uy(L,t) = t*
C.
u(0,t) =0,
ug(L,t) =t
d.
u.(0,t) =0,
ug(L,t) =1
5. Solve the wave equation
utt_ul’l’:l) O<I<L,
subject to the initial conditions
u(z,0) = f(z)

ut(xv O) = g(l‘)

and the boundary conditions
u(0,t) =1,

uz (L, t) = B(t).
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la. uy — g = S(x, t)

u(0,t) = u(L,t) =0

u(z, t) = i Un(t) on()

n=1,2--

Jy f(z) sin 2 2 dx

fOL sin? e

un(0) = ¢ = since u(z,0) = f(z)

xdx

U,(0) = cac™™ = 0 since w(x,0) =0 = ¢ =0

Z{c cos L et + L /tS(T)SiDCE(t—T)dT}SiHEl‘
L o " L L

— cnm

c1 is given above.
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b. If S = cos wt

L -
cos wt [y sin

nm
L

x dx

Sp(t) =
®) fOL sin? e

where A,, =

[e.e]
u(z, t) = Y e cos
n=1

x dx

= A, cos wt

L -
Jo' sin 2T xdx

L

. .
Jy’ sin® %% x dx

a

nTwc L

t +

c. Resonance occurs when

cnm

nmc

¢
A, / cos wT sin (t — 7)dr
0

This integral can be computed

— nm —
w=c* foranyn =1,2, -
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2. Uy — CPUgy + Bus = cos wt

n=12:-

t) = Y un(t) sin nx
n=1

coswt = Y s,(t) sin nx

__ cos wt foﬂ sin nx dz .
sp (t) = T ede A, cos wt

o o0
Z i, + *n*u, + B,) sin ny = Z Sp(t) sin nx
n=1

3
Il
—

(*) iy, + By + A nPu, = s,(t) = A, cos wt
For the homogeneous:

— 2 _ C2n2
Let u, = e (W? + Bp+ An*) =0 u:—ﬁivi &

For B < 2c¢, 3 — 4c?n?> < 0 = complex conjugate roots

VAR 2y 4 oy sin Y220 "2> o~ (B/2)t

Uy = (01 cos

T

Solution for homogeneous.

Because of damping factor e~ (32t there should not be a problem of resonance. We must
find a particular solution for inhomogeneous.

ul = B, coswt + C, sin wt
U, = —B,wsinwt + C,,w cos wt

i, = — B, w?cos wt — C,w? sin wt
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Substitute in (*) and compare coefficients of cos wt

—B,w? + BC,w + *n*B, = A,
Compare coefficients of sin wt

—C,w? — B,w+C, =0

2.2 9
Colfw+ (1 —w?)} = A,
=D,

C, =

Bn _ An (17’11}2)

D, w
P _ ﬂ(l_“ﬁ) An g
U, = H*—p— coswt + 7= sinwt| where

2n? — w?
D, = — (1 — w? A, =
fw + w ( w) I sin? nx dx

Therefore the general solution of the inhomogeneous is

Jy sin nxdx

Uy = 2

(01 Cos 7”40232_’6215 + 9 sin Vicn? -5 t) e~ (B/2)8) 4 % 1-w?
n w

coswt + g

sin wt

(**) u(z, t) = i un,(t) sin nx

n=1

w(z, t) = Y U,(t) sin nz
n=1

Un(t) = (c1 cos rt + ¢y sin rt) (—g) e 5t (—rcy sin rt 4 rey cos rt) e /2

_ An — 2 1 An
(1 — w?) sinwt + 5w cos wt

/4c2 n2 — [62

where r = 5
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u(z, 0) = 0 = Z {cl <—§> + reg + D—w} sin nz = 0
n=1

n

= —01§+r02+é—:w:0 (#)

u(z, 0) = f(z) = u,(0) are Fourier coefficients of f(x)

1y (0) = (q LAl w2> _J5 f(@) sin nade

D, w I sin? nx dx

=  we have ¢;

Use ¢; in (#) to get ¢z and the solution is in (**) with u,, at top of page.

264



3. Uy — g, = S(xt)
u(z, 0) = f(x)
w(z, 0) = 0
a. u(0,t) = A(t)

u(L,t) = B(t) = w=oaz+pf

B = At)
oL + 3 =08
o = Bzﬁ

w — B(t)ZA(t)x+A(t)

Wy = 0 Wy = “ZAx—l—A'

vV=UuU—w
uUu=v+w

Uy — gy = S, t) — wy = S(a, t)

u(z, 0) = flz) — 2OZAO 5 A(0) = F(x)

v(xz,0) =0 — wy(x,0) =0 — Mw — A(0) = G()
v(0,t) =0
v(L,t) =0
Solve the homogeneous

2
= ()

n=1,2--

¢n = sin Bz
v(z, t) = > v,(t) sin —x

n=1 L

L & .
. > . nmw S(z, t) sin 2 x dx
Sz, t) = Sp(t) sin —x  ,  |s,(t 0 ’ L
&) n§=:1 ©) L Q JE sin® 2%z dx




2
Uy, + (CZ“) Uy = Sp
v, (0) coefficient of expanding F'(x)

0,(0) coefficient of expanding G(x)

cnm e CNT t sin 2% (t—1)
Un = €1 o8 Lt+£2,81n Lt—l—fosn(T)%nde
1 1
0
v (0) WO e 8.3.12-13)
L
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u (L, t) =0 = Homogeneous.

L

n =1, 2,

S (n - Y
u =Y uy(t)sin x

n=1 L

S (n - Y
S =) su(t) sin 7 x

n=1

un,(0) coefficients of f(z)

co = 0 (since uy = 0)
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U =0+ w
Uy — Pugy = S(a, t) — A(t) (x — L) = S (x, t)
v(z,0) = flz) = A0)(z — L) = F(z)

v(z,0) =0 — A(0)(x — L) = G(x)

continue as in b.

268



4&. U — C2 Upye = xt

u(z, 0) = sin z

ur(z, 0) = 0

u(0,t) =1 P

= w(z, t) = r+ 1w = —
u(L,t) =t
wtt—O
Uy — Vg = at
2

v(0,t) = v(L,t) =0 = )\n:(%) ¢ = sin BT x n=12---

v(z, 0) = sin x — (—% + 1)

v(z,0) =0 — 7

nim

) = f:l v (t) sin 77

L 1 nm
Jo ot sin *F v dx

xt = i Sp(t) sin BT = s,(t) = 2
n=1 L Jo' sin® 2 xdx
Lo I : n7r
Lonm Jo (sinz + £ — 1) sin **xde
smx+——1 v,(0) sin — = 0,(0) =
nz::l ! L (0) Iy sm2 “Exdy

s m S Ry

> 0n(0) sin ——w 0,(0) = — 7L L

n=1 L Jo' sin® == v dw

¢ : _
— U, = €1 COS C\/Apt + cosin e/ A\, t + / 5n(7) sin c\/)\n)\(t T) ir
0 CcA\/ n

v,(0) = ¢
9,(0) = cacV/A,

continue as in 3b.
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b. uy — uy, = ot

u(z, 0) = sin x

u(z, 0) = 0
(0, 1) =t 2 —t 2% — 1
= w(z, t) = 57 z° + tx W= 57 7’
u (L, t) = t*
z? t* —t
Wyt = Wye =
tt L L

L
v(z, 0) = sin since w(z,0) =0
vi(2,0) =0 — 2 + &
v(z, t) = —vo(t) + D va(t) cos %x
n=1
s(x,t) = =so(t) + Y su(t) cos n%x
n=1

1 L 2 t?—t
= s,(t) = vt — = 4+ ¢ )cosmxdx n=20,1,2,---

1 o
sin z = ~vp(0) + > v,(0) cos i
2 P L

L -
Jo' sin x cos 2 x dx

L
= w0 = Jy cos? 2Z xdx

n=01,2---

2

x 1. > . nm
—T+ 57 = 51}0(0) + nz::l 0,(0) cos -
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The solution of the ODE for n = 0 is obtained by integration twice and using the initial
conditions

wl(t) = /Ot </O5 sO(T)dT> de + vo(0) + t(0)

n n t sinc™ (t — 1
anCncosc—WthDnSiHC—ﬂt‘i‘/ $n(T) L )
L L 0 T

dr

t sin &% (t — 71
sin C?zﬂt +/ Sn(T) Al >d7'
0

cnT

L

Lin (0
val(t) = v(0) cos Czﬂt L0

cnm

Now that we have all the coefficients in the expansion of v, recall that u = v + w.
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C. utt — C2 uacac e xt
u(z, 0) = sin z

Ut(l', O) =0

u(0,t) =0
=  w(z, t) = at; wy = x
ug (L, t) =t

wy = 0 Wy, =0
w(:z:,O) =0 wt(xao) =T

v(z, 0) = —x
> —1/2
v(z, t) = D v,(t) sin (n—1/ )Wx
n=1 L
> (n—1/2)m & at sin C22T 4 gy
xt = Sp(t) sin x = S,lt) =
n§=:1 ®) L Q & sin? ("72/2)” xdx
. > . (n—=1/2)7 JiE sin @ sin C=AT 4 g
v(x,0) = sin x = v,(0) sin ——x = ,(0) =
(2,0) 3 60 H 0 = e e
>, . (n—=1/2)7 ' — JF xsin %xdx
v(x,0) = —x = U,(0) sin ——«x v,(0) =
(00) = =2 = 3 in(0) sin 0 = e g

/ N t in cyvA\, (t —
= v, = €1 COS c\/A\,t + ¢c9 8in ¢ )\nt+/ Sn(T) sin ¢ n)\( 7') dr
0 cA/ n

v,(0) = &1

0,(0) = cocv/ A

continue as in 3b.
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d. uy — Auy, = xt

u(z, 0) = sin x

ur(z, 0) = 0
ux(O, t) =0 1'2
= w(x,t):ﬁ; wy =0
u (L, t) =1
wy = 0 Wee =
22
Thus w(zx,0) = 5 we(x,0) = 0
2 c?
vtt—cvm:xt—i—z
———

s(x,t)

v(0,t) = v (L, t) =0 = An = ("”)2 ¢n = cos

2L
ve(z, 0) = 0
v(z, t) = —vo(t) + D va(t) cos ™
2 = L
1 > nm
s(x,t) = =so(t) + > su(t) cos —x
2 o L
1 [ ? nm
. - - —=0.1.2.---
= su(t) 7 ) <:I:t + L) cos — xdx n=20,1,2,
x? 1 > nm
v(x,0) = sin x — °F = 21)0(0) + nz::l v,(0) cos -
1 L x? nm
_ - nr — — - —0.1.2.---
= v,(0) L/o (smx 2L> cos — xdx n=20,1,2,
. nm
v(2,0) = 0 = =99(0) + > 0,(0) cos 7 0,(0) = 0
n=1
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The solution of the ODE for n = 0 is obtained by integration twice and using the initial

conditions
wl(t) = /Ot </O5 SO(T)dT> de + vy(0)

n n ¢ sin ¢ t—1T1
anCncosc—WthDnSiHC—ﬂt‘i‘/ $n(T) L )dT
L L 0 cT

v,(0) = C,

0,(0) =0 = D,e™ =D, =0

¢ in am (4 _
vn(t) = v,(0) cos DT+ Sn(T) sin 7 =~ 7) d
L 0 =

T

Now that we have all the coefficients in the expansion of v, recall that u = v + w.
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D, Uy — Ugy = 1
u(z, 0) = f(x)
uy(z, 0) = g(x)

g
—~
=

~
~—

I

1
} = w(z, t) = xB(t) + 1; w, = zB(t)
B(t)

S
8
—~
i

~
~—

I

Wy = xé(t) Wey = 0
w(z,0) = zB(0) + 1 wy(x,0) = zB(0)

L L
> —1/2
v(z, t) = D v,(t) sin (n=1/ )Wx
n=1 L
> —1/2
S(z,t) = ) su(t) sin (n L/ )Wx
n=1
N t) L S(a,t) sin = 1/2 T xdr
sp(t) =
[F sin? 2= 1/2 T xdx
e _(n—1/2)x J& F(z) sin @A 4 gy
F(x) = Up(0) sin ———=x = v,(0) =
(@) = 3 0) H L e
> . (n—=1/2)7 . fOL G(z) sin (n— 1/2 T xdr
G(xr) = U,(0) sin ———x = 0,(0) =
) nz::l ® L © JiE sin? M:pdz

¢ in v\, (t —
= v, = €1 oS \/ At + cosin /A, t + / Sn(T) S \/)\L 7) dr
0 n

v,(0) = ¢
Un(O) = CQ\/)\_n

continue as in 3b.
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8.4 Poisson’s Equation

Problems
1. Solve

Vu = S(x,y), O<azx<L 0O0<y<H,
a.

Use a Fourier sine series in y.

b.
u(0,y) =0 u(L,y) =1

u(z,0) =u(x,H) =0
Hint: Do NOT reduce to homogeneous boundary conditions.

Uy (z,0) = uy(z, H) =0

In what situations are there solutions?
2. Solve the following Poisson’s equation
Viu = e*sinz, O<zxz<m, O0<y<lL,

u(0,y) = u(m,y) =0,
u(z,0) =0,

u(z, L) = f(x).
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l.a. V2u = s(z, y)
u(0,y) = u(L, y) =0
u(r,0) = u(z, H) =0 = sin Ty

Use a Fourier sine series in y (we can also use a Fourier sine series in = or a double Fourier
sine series, because of the boundary conditions)

u(z, y) = > uy(z) sin 22y
n=1 H

S(z,y) = Y sn(z) sin 2T
n=1 H

Uyy Uz

() — (%)2 up(z) = 8, ()

Boundary conditions are coming from u(0, y) = w(L, y) = 0

S u,(0)sin -y =0 = u,(0) =0
n=1 H

u, (L) sin %y =0 = wu,(L)=0
n=1
" :Sinhn_J(L_”’)/x inh "™ ¢4
sinh 57 x L .. nT
n h— (L — &)d
“ox gy nzp, J, S8 st g (L= O dS

Let’s check by using (*)

un(0) = 1°" term the integral is zero since limits are same

2" term the numerator is zero = sinh 20
un(L) =  1°" term the numerator sinh 5% (L — L) = 0

2" term the integral is zero since limits of integration are the same.
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_ _—7cosh"—;(L—x)/m L sinh 2% (L — x) op T
= i aEr o SO sh St T e salw) sinh T
integrand at upper limit
‘g cosh TFa L ., nm sinh 57 x a7
n h— (L=&)d —Sp h —— ([, —

integrand at lower limit

Let’s add the second and fourth terms up

_m Sp () < sinh nﬁﬂ (L — x) sinh %m — sinh %m sinh % (L — x)
=0
nm 2 3 h nTm L nm nm
i, = (_F) sinh 7 (L — ) /xs (f)sinhmﬁdf%—_F COShF(L_x)S(x)sinhEx
" —~5F sinh %% L o —~2F sinh %% L "

(%)2Sin “rroL © 'hnW(L &) de &F cosh &F x (x) sinh (L )
+ NT o nm Sn s ——-— - + nr - nn —Sp\T) SInn —— — T

—=F sinh 57 L Ja H —5F sinh 5F L
Let’s add the second and fourth terms up
#@%L sinh%x cosh nﬁﬂ (L — x) + cosh %x sinh % (L — x)p = su(x)

=sinh 5% (z — (L —z)) =sinh 57 L

2
The integral terms in i, are exactly (%) u,, and thus the ODE is satisfied.
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b. VZu = S(z, y)
w®,9) =0 w(l,y) =1

nm

u(r,0) = u(z, H) = 0 = sin Ty

Use a Fourier sine series in y

u(z, y) = Z up, () sin n—ﬂy
n=1 H

S, y) = 3 sn(x) sin =y
n=1 H

Boundary conditions are coming from u(0, y) = 0 u(L,y) =1
S un(0) sin oy =0 = u,(0) = 0
n=1 H

1 H
un(L)sin%yzl = un(L):ﬁ/O 1-sinn§ydy

n=1
4
= u,(L) = — for n odd and 0 for n even. (see (5.8.1)

For n even the solution is as in la (since u,(L) = 0)

For n odd, how would the solution change?

4
Let w, = ——=x, then @, = 0
nmL
Let v, = u, — w, then v,(0) = 0 and v,,(L) = u,(L) — w,(L) = 0
and
" H " H) nrnlL "
This is the s, to be used in (*) in la
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C.

Viu = S(z, y)
uz (0, y) = 0 ug(L,y) =0 = cos Fux
uy(z,0) = uy(z, H) = 0 = cos %y
Use a double Fourier cosine series
mm

u(z, y) = D) Upm COS %x co8 — Yy

n=0m=0

S(z,y) = D> Spum cos BT & cos My
n=0m=0 L H

_ Jo' o Sz, y) cos Ty cos Exdr dy

2 mmw 2 nmw
Jo' Jo© cos? BEy cos? B wdx dy

5 S [(F) () e oo = stew

2 2
~tnm {(7) + (%) } = Snm
Substituing for s,,,, we get the unknowns wu,,,
AL S(x, y) cos By cos BE g da dy
0o Jo H L
2 2
[(”—L”) + (%) }ff fOL cos? "y cos? “E xdx dy

Upm =

What if A, = 07 (i.e. n = m = 0)
Then we cannot divide by A,,, but in this case we have zero on the left
= fy' i S(x, y)dedy = 0

This is typical of Neumann boundary conditions.
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2. V?u = e¥ sinx

u(0,y) =0 u(r,y) =0 = sinnzx
u(@, 0) =0 ulz, L) = f(z)
Use a Fourier sine series in

u(z, y) = D uy(y) sin nx
n=1

S(x, y) is already in a Fourier sine series in z with the coefficients s;(y) = €* and all
the other coefficients are zero.

x x
Z —n?u, sin nx + i, sin nz y = Z Sp(x) sin nx
n=1 n=1

Uz Uyy

in(y) —nuu(y) =0  forn#1
i (y) — w(y) = e®

Boundary conditions are coming from u(z, 0) = 0 u(z, L) = f(x)

Y uy(0)sinnz =0 = u,(0) =0
n=1

> un(L)sinnz = f(z) = un(L) = z/ f(x) sinnw dr
n=1 0
The solution of the ODEs is
1
ui(y) = ger + aqsinhy + B coshy
——

particular solution
and

un(y) = apsinhny + [, coshny n#1
. 1 1
Since u1(0) = 0 we have 3 + 6 =0 =0 = ~3
Since u,(0) = 0 we have 8, = 0 n#1
1

1
Using (L) we have 3 e*r + a; sinh L — 3 cosh L = wuy(L). This gives a value for oy

ui(L) + 3coshL — et
sinh L

a1 =

Using u, (L) we get a vlaue for ay,
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U, (L)

n — 1
@ sinh nL n#

Now we can write the solution

Un (L )
sinh nL

1 1 >
u(z,y) = (a1 sinhy — gcoshy + §€2L> sinx + E ( sinhny) sin nx
n=2

with o as above.
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9 Fourier Transform Solutions of PDEs

9.1 Motivation

9.2 Fourier Transform pair

Problems

1. Show that the Fourier transform is a linear operator, i. e.

Flerf (@) + ag(x)) = e F (f () + 2 F (9(2)) -

2. If F(w) is the Fourier tranform of f(x), show that the inverse Fourier transform of
e~ “PF(w)is f(x — (). This is known as the shift theorem.

3. Determine the Fourier transform of

0 |z|>a

f(x):{l 2| < a.

4. Determine the Fourier transform of

5. Prove the scaling theorem

6. If F(w) is the Fourier tranform of f(z), prove the translation theorem

F (ei“‘”f(x)) = F(w—a).
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Flerf(a) + o) = o= [ (f(@) +egla) e dr

:27T —00

The integral of a sum is the sum of the integrals:

1 foo - 1 foo ~
=0 —/ f(z)e ™" dx +02—/ g(x)e " dx

21 J—o0 21 J -

F(f(@) Flg(z))
= aF (f(2)) + e2F (9(x))

Ft (e‘iwﬂF(w)) = /Oo F(w)e “Pelrdy

— 00

= /OO F(w)eiw(m_ﬁ)dw

—0o0

= flz—0)

e

T r )

1 a

- 1- fiwxd
21 J-a c v

a

1 1

2T —w

—iwx

—a

_ -1 (e’i“’“ _ eiwa) _ 21 sin wa
2miw 2miw

—2isinwa

sinwa

e
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4. Differentiating

we get

af
dr o(x).

Now we can either use the definition (9.2.1) or we can use (9.4.2) saying

f(%)::wfu>

to get

F(d) = iwF ( / x¢(t)dt) .

0
Therefore dividing by iw

]—"< /O xgzﬁ(t)dt) _ i}"(qﬁ).

5. Say a > 0, then
1 oo .
F(flaa) = 5= [ e flaa)dr
can be transformed by the substitution y = ax to (remember dy = a dx)

Ffan) = 5— [~ gy = =5 (£)

T™Ta J-—oco a a

If a < 0 then the transformation reverses the limits of integration and that will pull a negative

1 1
sign in front. So we have —— multiplying the integral and that’s ﬂ in this case.
a a
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f (eiaxf(x)> — % ‘/_o:o eia:vf(x)e—iwxdx

1 [e%¢) .
_ % ‘/7<><> f(x)e—z(w—a):vdl.
= F(w—a)
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9.3 Heat Equation

Problems
1. Use Fourier transform to solve the heat equation

Up = Ugy + U, —00 <z < 00, t >0,

u(z,0) = f(z).
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1.
The Fourier transform of the equation is

Ulw,t) = —w?U + U = (1 —wU

subject to
Thus

The inverse Fourier transform is

u(x,t) = € /OO F(w)e ™ e dw

—0o0

since €' is independent of w. The integral is the same as was done in class and the solution
is (see (9.3.8))

L e
ulet) = o= [ f(© e
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9.4 Fourier Transform of Derivatives
Problems
1. Solve the diffusion-convection equation

Uy = Kgy + Cly, —0o<r< oo,

u(x,0) = f(z).

2. Solve the linearized Korteweg-de Vries equation

Uy = Klgyy —00 < & < 00,
u(z,0) = f(z).
3. Solve Laplace’s equation
Ugy + Uyy = 0, O<z<L, —00 <y < o0,

subject to
uw©,y) = a(y),
u(L,y) = g2(y)-
4. Solve the wave equation

Ut = Ugy —0<r<oo,
u(z,0) =0,
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1. Use Fourier transform to solve the heat equation

Uy = Ky + Cly, —00 < x < 00, t>0,

u(z,0) = f(z).
Taking the Fourier transform, we have

U, = —kw?U + iwclU, t >0,
U(w,0) = F(w).

The solution of this initial value problem in ¢ is
[](u)7 t) — F(w)ef(ku.ﬂ—icw)t

Now we find the inverse Fourier transform

u(.T, t) - / F(w)ef(kwgficw)teiwxdw

—00

0o .
u(x,t) — / ezwctF(w) €_kw2t e dw
——— T

—00

Hw) — 6@
Therefore
u(z,t) = hx*g, using the convolution theorem
where
h=F " (Hw) = f(x+ct) see problem 2 in section 9.2
FLa T i
pr— - p— _— 7m
g=F(OW) = [T
Therefore

u(z,t) = % /_O:O f(&+ct) \/ge_(%ft)2 d¢
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2.
The Fourier transform is

Uy, = (i)’ kU = —iku®U

The solution of this differential equation with the initial condition U(w,0) = F(w) is given
by A
U = F(w)e ™"

Let A
G(w) e—zkw3t

then
Ulw,t) = F(w)G(w)

We can now use the convolution theorem. If
ikt iwa o i(kwit—wz)
g(x) = / e e“dw = / e dw
—Oo —Oo

then

u(e,t) = o [ F€gle - €

27 J—oo

The question is how to find g(z)
Let kw®t = s°/3 after using symmetry we get

S © 2 > 83 ST
_ i(kw3t—wz _ 3 —
g(z) = [m el Vdw = 2/0 cos(kw’t—wx)dw = RO /0 Ccos (g - (3kt)1/3> ds

27 —T
S (.
9@) = Gy ((Skzt)l/?’)
where A;(x) is the Airy function (the solution of y” — zy = 0 satisfying lirf y = 0 and
3—2/3

The plot of Airy function Ai(x) is given as figure 60.
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Airy function
0.6 T T T T T

L L L L L L
-2 0 2 4 6 8 10

Figure 60: Airy function

3.
Ugy + Uyy = 0, O0<z<L, —00 <y <00,
subject to
u(0,y 91(y)
u(l,y) = g2(y).
Use Fourier transform in y
Upe(2,w) — 0?U(x,w) = 0
U(0,w) = G1(w)
U(L,w) = Gy(w)
The solution is
sinhwz sinhw(L — x)
Uime) = @ gror + ) —Gmer

Now take the inverse transform.
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4. The Fourier transform of the PDE and the initial conditions
Utt = —W2U
U(w,0) =0
Ut(w70) = G(w)
The solution is
U = A(w) coswt + B(w)sinwt
where A(w) = 0 and B(w) = G(w)/w

Ulw,t) = Gw) sin wt
w

Using the inverse transform formula

u(z,t) = /OO G(w) s wt ™" dw
—00 w

This is a convolution of g(x) with the function

0 >t
/(@) _{ T x| <t.
since (see table of transforms)
1 sinaw
Fh(z)) = ——

for

0 |z >a
h(x)_{l lz] <a.

Note that h(z) = 7w f(z)

1 00

u@t) = o= [ gle=¢ /()
mw J—00 N——— N——

initial condition r if |g<t
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9.5 Fourier Sine and Cosine Transforms

Problems

1.
—Oé:EQ

a. Derive the Fourier cosine transform of e
. . . _ 2
b. Derive the Fourier sine transform of e=®*".

2. Determine the inverse cosine transform of we™* (Hint: use differentiation with respect
to a parameter)

3. Solve by Fourier sine transform:

ut:kuacacy x>0, t>0
u(0,t) =1,
u(z,0) = f(z).

4. Solve the heat equation
ut:kuacacy x>0, t>0
uz(0,t) =0,
u(z,0) = f(x).

5. Prove the convolution theorem for the Fourier sine transforms, i.e. (9.5.14) and (9.5.15).

6. Prove the convolution theorem for the Fourier cosine transforms, i.e. (9.5.16).

a. Derive the Fourier sine transform of f(z) = 1.
b. Derive the Fourier cosine transform of f(z) = / o(t)dt.
0

c. Derive the Fourier sine transform of f(x) = / o(t)dt.
0

1
8. Determine the inverse sine transform of —e™*“ (Hint: use integration with respect to a
w

parameter)
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2 00
C [e*a’q = — / e coswz dz by definition
m Jo

Using the symmetry (since the integrand is an even function) we have

C [6_%2} = l /OO em0T? QT o

T J—00

Recall the relationship between the cosine and complex exponentials.

—az? —az? 1 _w?
C [e } 2F (e ) N e 4
b. 9
o
S [e_mg} = — / e~ sinwz dr by definition
m Jo
— i > e—ax2+iwac dr — i o e—aacQ—iwac dr
i Jo i Jo
Use the transformation z = —x on the second integral.
Thus dz = —dz and —az? —iwr = —az? +iwz.
— i > efaxQJriwx dr — i > efangriwz (—dZ)
e Jo i Jo

Now change the dummy variable of integration z to x and reverse the limits on the second

integral

1 oo o,
_ eaerzwxdx_

i Jo T J—o

1

—ar24i
e ax +zwxdx

Notice that the integrals are similar except for the limits.
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o0
ot {we—aw} :/ we * coswrdw
0o T

7%(e—wa)
(9 e’}
= _8_/ e~ coswxdw
o Jo
a —aw
= ~%a C {e }
N ——’
= %> from table
9 a1 (@+a’)-a-2a
= TerEra T (@i
2?2+ a’ -2 2P
 @+aer)r (@ tae?)p
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3. Since u is given on the boundary, we use the Fourier sine transform:
2 2
U =k | —wu(0,t) — wU
T

Substitute the boundary condition, we get

2k
U = Z=w — kU

The solution of this ODE is

2
U t — —kw2t _
(,0) = clw) e + =
Use the initial condition 5
F = U(w,0) = —
(@) = U(w,0) = () + —
Therefore 5
— Flw) — —
ow) = F(w) = —
Plug this ¢ in the solution
2 2 2
Uw,t) = |Flw) — —| e ™" + —
(@?) { () m}] ‘ W
This can be written as
Shu] = Uw,t) = Flw)e ™t 4 2 _ 2 -kt
’ W W
S[f]-Clg]
where
G(w) = ekt
We now use convolution
1 o)
Sif-Clol = — |7 #(©lgla =€) = gla+8))dg
where ¢ is the inverse cosine transform of G.
Since
P 2 _w?
Cle "] e ia
4o
d kt !
n _— = T _
we nee or o S SO
12 2 2
0[6_4_1“] — - e—ktw
477'4—]“



or

1 2
3 %C[e’m] = o htw?
Therefore
1 /@ 7;_;
= —,/—e
9= Nt

Now the first term is

1 1 0 z—¢)2 z+6)2

STH—]=1

e

The second term is

The last term is again by convoultion of 1 with the same function g, that is

1 fm1 g (z—8)2 (z+8)2
i e 1-le — e T | d
2th7r/o {6 e m} ¢

If we decide to use (9.5.15) then remember that the inverse sine transform is giving the
constant 1 for x > 0. Combining all these terms

1 /1 o0 z—¢)? z+€)2 1 /1 0o )2 )2
u(g;"t) = 5 %/0 f(g) [6(4’5’5) — ef(djft) :|d€_|_1_§ %/0 1.|:€(4k§t) — 67% df

(z—8)2 (2483

u(z,t) = —/OOO [f(&) — 1] {6_ e — e Akt }df—l—l
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4. Since the boundary condition is on u,, we have to use Fourier cosine transform:
Uy = —kw?U since u,(0,t) = 0

The solution is

U = Flw) ¢
ci Cll

This g is exactly the same as in the previous problem.
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5. To prove (9.5.14), we start with the definition of inverse Fourier sine transform
o0

S~UH] = h(x) = / S(f)C(g)sinwz dw

0
Substitute for the Fourier sine transform of f

STHH] = h(z) = /Ooo (g /OOO (&) sinwfdf) C(g) sinwzx dw

T
We now rearrange and put the integral over w inside

SUH] = h(z) = 3/00o F(€) /oo C(g) sinwé sinwz dw dé

7 0

We can use the trigonometric identity
. . 1 1
sinwé sinwr = 5 cosw(z — &) — 5 cosw(z + &)

and get two integrals

1 00 00 00
STH) = hia) = — [T 1O | [ Cloreoswo = dw — [T Clg)coswla+ ) du) de
m Jo 0 0
Now each of the inner integrals is inverse Fourier cosine transform of g at x — £ and = + &.

Thus
STUH] = hw) = = [ F©lole —€) — gle +E))de

m Jo
To prove (9.5.15), we substitute for the inverse Fourier cosine transform of g and go through

similar arguments

1 - I e ) .
STHH] = h(z) = /o (7?/0 g(&) coswEdE ) S(f)sinwz dw
We now rearrange and put the integral over w inside
2 00 [e§)
-1 o _“ .
STH] = h(z) = 7T/0 g(f)/o S(f)coswé sinwx dw d§

We can use the trigonometric identity
. 1. 1.
coswé sinwxr = 5 sinw({ +x) — 5 sinw(§ — )

and get two integrals

STUH] = h(z) = lfomg(g) Uom S(f)sinw(€ + z) dw — /OOOS(f)sinw(g—x)dw de

™

Now each of the inner integrals is inverse Fourier sine transform of f at £ + x and & — x.

Thus
1

STUH) = h@) = — [T g€ [f(€+2) — Fl& - w)]de

™
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6. To prove (9.5.16), we start with the definition of inverse Fourier cosine transform
C~'H] = h(z) = / C(f)C(g) coswz dw
0

Substitute for the Fourier cosine transform of g

_1 B B [e’s) g o) )
CVH] = h(z) _/0 (W/O 9(€) coswe de ) C(f) cos wa duw
We now rearrange and put the integral over w inside
2 [e§) [e§)
C-1H] = h(z) = —/ g(g)/ O(f) coswé coswa dw dé
7 Jo 0

We can use the trigonometric identity
1 1
coswé coswxr = 5 cosw(r —&) + 5 cosw(z + &)

and get two integrals

) = hw) =~ [To@ [T e coswte— ) do + [T O coswle +€) ) de
0 0 0
Now each of the inner integrals is inverse Fourier cosine transform of f at x — & and x + €.
Thus
C1H] = ha) = = [T 9@~ ) ~ fle+o)]de
m Jo
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7.
a. By definition

92 foo
S(1) = —/ sinwzdz
7 Jo

2-1 2
= ——CoSWwr = —.
T W o

b. The Fourier cosine transform C ( / ' ng(t)dt) can be derived by using
0

_ 4
- dx

() = et

¢ ([ owar) = -=s0)

w

()

and (9.5.6)

Divide by —w we get

c. Asin part c. the Fourier sine transform S < / gb(t)dt) can be derived by using
0

0w = 7
and (9.5.5)
o (L) = -2r0+wsir
for

which satisfies f(0) = 0. Divide by w we get

s([ otar) = Zct)
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8. Note that

Therefore

t—o0

1
= —arctan(t/x)
x t=«

T 1 «Q
= — — —arctan <—) .
2r  «x T
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9.6 Fourier Transform in 2 Dimensions

Problems

1. Solve the wave equation

uy = AV, —00 < < 00,
u(z,y,0) = f(z,y),
u(z,y,0) = 0.
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1. Fourier transform in two dimension of the given wave equation yields:

Uy = & (— &)U = = & U(wr, wa, 1)

The solution is

U(wy,ws, t) = A(J) cosc|d|t + B(J) sinc|dt
Using the Initial conditions in the transform domain, we get

U(wy,ws,t) = F(&J) cosc|dt
—_——
G()

By the convolution theorem

uant) = oz [ [ 09 - iy ary

—0o0 —00

We only need to find

g(r) = / / cos ¢|&|t e T d
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10 Green’s Functions

10.1 Introduction

10.2 One Dimensional Heat Equation
Problems

1. Consider the heat equation in one dimension

%:%—i—@(m,t}, 0<x<l, t>0,
U(JZ',O) = f(x)a
u(0,t) = A(t),
u(1,t) = B(t).

Obtain a solution in the form (10.2.16).

2. Consider the same problem subject to the homogeneous boundary conditions

uz(0,t) = ux(1,8) =0

a. Obtain a solution by any method.
b. Obtain a solution in the form (10.2.16).

3. Solve the wave equation in one dimension

0? 0
22l Qt), O<z<l, t>0,
Xz

u(z,0) = f(z),
u(x,0) = g(x),
u(0,t) =0,

Define functions such that a solution in a similar form to (10.2.16) exists.

4. Solve the above wave equation subject to

; w(0,) = uy(1,¢) = 0.
b.
u.(0,t) =0, uz(1,t) = B(t).

w(0,8) = At),  ug(1,t) = 0.
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u(z, 0) = f(z)
u(0, t) = A(t)
u(1, 1) = B(t)

Solution: Let w(x, t) = A(t) + z[B(t) — A(t)] and let

Then VU = Vg +y(z, t)  where y(z, t) = Q(x, t) — Wy + Wy
v(z, 0) = g(z) = f(x) — A(0) — z[B(0) — A(0)]
v(0,t) =v(1,t) =0

The Homogeneous solution has eigenfunctions and eigenvalues

®,(z) =sin(nmx), N\, = (n7)? n=1,2 ...

f) = ff Un(B)u()

where (e )sin( d X
_Joylz, t)sin(nmx)dr )
yn(t) = Do) dr 2/0 y(x, t)sin(n ) dx
Let vz, t) = i Un(t)pn(x)  then w(z, 0) i v, (0
n=1 n=1

0(0) = f) g(x)sin(nx dx_Q/

5 )sin(n7x) dx
Jisin®(nmx)d

So

Substitute in the equation'

Z )sin(nra) => (- n(t) sin(nmx) —l—Zyn

=1 n=1 n=1
or i {U;(t) + (n ), (t) — yn(t)} sin(nmx) =0
n=1
S0 vl (1) + (n )20, (t) = ya(t)
where v,(0) =2 /01 g(x)sinnmzder
This has a solution v (t) = (nm)*t 1 / e~ (=) g

(using variation of parameters). Thus
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)= isin(nﬂx

(nm) 2/ )sin(n 7 s ds+/ / ) sin(n s)ds =™ g7
- / [225111 nx)e (1™ sin(nﬂs)] ds
+ /0 /0 y(s, ) lz )3 sin(n  z)e~ M) sin(ms)] drds
50 v(z, t) = /01 [f(z) = A(0) — 2 [B(0) — A(0)]] G(z; s, t)ds

+/01 /Ot [Q(z, t) — A'(t) + 2 [B'(t) — A(t)]]G(x; s, t — 7)drds

where G(z; s, 1) =2) sin(n7x)e” "™ sin(n 7 s)

n=1
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2. Up = Upe + Qx, 1) 0<2<1 t>0

u(z, 0) = f(x)
uz (0, ) = u,(1,¢) =0

(a). The homogeneous solution has eigenfunctions and eigenvalues

®,(r) =cos(nmx) A= (nm)> n=0,12...

SO u(z, t) = ian(t) cos(nm )
_ Jo f(@)cos(nma)dx 1
a,(0) = ooty de 2/0 f(z)cos(nmx)dr

Expanding Q(z, t) = qn(t)cos(nmz)
n=0

where the coeflicients

I(t) =2 /01 Q(x, t) cos(nmz)dx

t
SO an(t) = an(o)e—(nw)% + 6—(n7r)2t/ qn(T)e(nﬂ—)QTdT
0

Thus N 1
u(z, t) =Y _ cos(nmx) {2/ f(s)cos(nms)dse ™™’ 4
n=0 0

. ftoql
e~ (nm’t / / 2Q(s, 7) cos(n s)ds e 7r)QT(JZT]
o Jo

-/ “f(s) Lf%?cos(nﬂx) Cos(nﬂs)e("”)gt] ds+

/ 1 / Qs 7) [5302 cos(n ) cos(nﬂs)e_(””)Q(t_T)] drds
(b). u(z, 1) =/01f(8)G(w; s, t)ols+/01 /OtQ(s, 7)G(x; s, t — 7)drds
where Glx; s, t) = io 2 cos(nm ) cos(n s)e~ ™

309



3. Uy = Uz + Q(z, ) 0< <1 t>0

u(z, 0) = f(x)
w(z, 0) = g(z)
u(0, t) = u(l, 1) =0

The homgeonous solution has eigenfunctions and eigenvalues

Qu(x) =sin(nwx), M= (1) n=12 ...

o0

Z )sin(nwz)  so  gu(t) = 2/01 Q(z, t)sin(nnz)dx

Let Z ) sin(nmx)
Then Z )sin(nmz) and g(x Z Al (0) sin(nmz)
So Al(t) + (n 7T)2An(t) = qn(t) where

) =2 )sin(nrz)de  and A’ (0) = 2 fy g(z) sin(nwx) da
n 09

The solution is then
A, (t) = Ky, cos(nmt) + Ky, sin(nnt) + [A,, ()]

p

where the particular solution is

(A4, (r)), = —ostomt) sin(nrt)

/t cos(nmt)q, (T)dr

nm 0

/Ot sin(nw7)q, (1)dr +

nm

= 2/ )sin(nrs)ds  and K, = = Ji g(s) sin(nms)ds

So u(z, t) = i; sin(nmz) {2 /01 f(s)sin(nms)ds cos(nmt) + % /01 g(s) sin(nms)ds sin(nt)
%E:me) /Ot sin(nwr)2 /01 Q(s, T)sin(nws)dsdr
sin(nmt)

¢ 1
/ Cos(mrT)Q/ Q(s, 1) sin(mrs)dsdT}
nt Jo 0
Rearrange:

u(z, t) = /01 f(s) li 2sin(nmx) sin(nrs) cos(mrt)] ds

n=1
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—1—/ l — sm (nmx) sin(nms) sin(mrt)] ds

+/0 /0 Q(s,7) ni::l % sin(nmz) sin(nws)(— cos(nmt)) sin(mw)] drds

+ /01 /Ot Q(s,7) nio:l % sin(nmz) sin(nws) sin(nmt) cos(mm')} drds

u(z, t) = /01 f(s) Li?sin(mrx) sin(nms) COS(?’HTt)] ds

+/ [ —— sm (nmx) sin(nms) sm(mrt)} ds

+/ / Q(s, 7 [00 — sin(nmz) sin(nws) {sin(nnt) cos(nw7) — cos(nnt) sin(nn7)} | drds
But {sin(nnt) cos(nnt) — cos(nnt) sin(nw7)} = sin(nw(t — 7))
So Let G(z; s, t) = ni::l % sin(nmz) sin(nms) sin(nmt)

Then u(z, t) = /01 f(8)Gi(z; s, t)ds + /01 g(s)G(x; s, t)ds

+/01 /OtQ(s, T)G(x; s, t — 7)drds
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4a. Uy = Uge + Q(z, ) 0< <1 ¢t>0

u(z, 0) = f(t)

Ut(xa O) = g(l‘)
2(0, 1) =u,(1,t) =0

I~

For the homogenous problem, the eigenfunctions and eigenvalues are
®,(z) =cos(nmx), N =(nm)? n=0,1,2,...
Expand in terms of the eigenfunctions:
Z qn(t) cos(nmx)

where —2/ Q(z, t) cos(nmx)dz n=1,2 ...

Let Z A, (t) cos(nm ).

/Qstds+t/ ds+/

For n>0: -
u(z, 0) = f(x) = z_: A, (0) cos(nmx)
where An(0) =2 [ f(z) cos(nmz) da
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u(z, 0) Z Al (0) cos(n )
where Al (0) = 2f0 ( ) cos(nmx) dz

AR (t) + (nm)* An(t) = gu(?)

Ap(t) = kin cos(nmt) + ko sin(nmt) 4 [A,(1)]

p

[A. ()], = M /Ot sin(nm7)q, (7)dT + sin(nrt) /Ot cos(nmT)q, (T)dr

nm nm
= 2/ ) cos(nms)
kop = — d
m= | g(s) sin(nms)ds

So  wu(z,t)= 2 cos(nmx) {2 /01 f(s) cos(nms)ds cos(nmt)

2 1

— ds si t
+n7r ; g(s) cos(nms)ds sin(nnt)

cos(nmt) [t

ni /0 sin(n77)2 /01 Q(s, T) cos(nms)dsdr

sin(nnt) [t
, sin(ort)

o /0 cos(nmwt)2 /Ot Q(s, 1) cos(mrs)dsdT] + Ao(t)

ule,t) = [ " 1(s) li 2 cos(n m z) cos(nms) cos(mrt)] ds

n=1

n / [ —Cos (n7 ) cos(ns) sm(mrt)] ds

* / / Qs, 7 { _Cos(nﬂx)cos(mrs)sm(mr(t—7'))}des

+Ao(1)

where we have used the identity

[sin(nmt) cos(nmT) — cos(nmt) sin(nwt)] = sin(nw(t — 7))

(e 9]

2
G(zys, t) =) — cos(nm x) cos(nms) sin(nt)
n=1 N7

Let
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Then u(z, t) +/ Gtxstds—i—/ G(z; s, t)ds

//QST (x; s, t—7)drds+ — / Stds+t/ ds—i—/
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4b. Same as 4a, but

Let

So

with

and

where

wle, 1) = (1),

uz(0, 1) =0 (1, ) = B(t)

so w.(0,t) =0 w,(1,t)=p(t)

vz, t) =u(x, t) —w(z, t)

ol 0) = 1)~ £ 50)

v (z, 0)

= g(x) - S5(0)

v(0,t) =v,(1,8) =0

Vit = VUgr + Q(xa t) - wtt(xa t) + wxx(xa t)

wtt(f, t) =

Wy (2, t)

%Qﬁ”(t)

= p(t)

u(z, t) =v(x, t) +w(z, t) where v(x,t) isasin 4a.

f(@) = fl@) = SB0), glx) = g(a) = SB(0)

+yf0@—fmw

G(z; s, t—71) =

A (Q(s, H-2

ds+ [ (g(s) = S0))ds

82

0))Gi(x; s, t)ds +/ Eﬁ’(O))G(x; s, t)ds

(1) + B( )] G(z; s, t —1)drds

i_o:l % cos(nmz) cos(nms) sin(nm(t — 7))
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de. w(0, ) = A(t) uy(1,1) =0

Let w(z, t) = (1—2)* A(t)
Then  w(0,8) = A(®) wa(l, ) = —2(1 — 2)A(t) sy = 0
As before letting vz, t) =v(z, t) — w(z, t)

Uy = Vg + Q(, 1)
where Qz, t) = Q(z, t) + (1 — x)2 A" + 2A(1)
v(z, 0) = f(z) — (1 - 2)*A(0) = f(x)
v(z, 0) = g(z) — (1 - 2)°A'(0) = g(=)
v(0, ) = v.(1,1) =0

The homogenous equation has eigenfunctions and eigenvalues

gbn(x):cos(n—%)Wx )\n:[(n—%>7rr n=1,2, ...

Qx, t) = nz: qn(t) cos Kn —

1

2

where qn(t) = 2/ Q(x, t) cos [
0

1

2

v(z, 0) = ;AH(O) cos [(n — %) m:} = f(x)

Jo f(@)cos(n — 3wz da
Jo cos?(n — 3)mxde

-2 Hornl (o= o]
:ZA’ cos[(n—%)wx}Zﬂ@

where =2 / ) cos (n — —) Tx dr

where A,(0) =




The solution is
1 1
A, (t) = Ky, cos Kn - 5) Wt] + Ky, sin Kn - 5) Wt] + [An(1)],

where the particular solution is

1

[An()], = — [(n _ 5) mﬁ} /Ot sin [<n - %) WT} qn(T)dT

(n— )

D] 1Y o

(n—)m 2

dx

Ky, = 2/01 f(x) cos [(n - %) e
2 1

Ky, = m /Olg(x) cos [(n - 5) Wl‘] dx

u(z, t) =v(x, t) +w(z, t)

= 2An(t) cos [(n - %) 7T$} + (1 —2)”A(t)

= (1—x)2A(t)+n§: cos [(n - %) 7TZL‘:| [2 /01 F(s) cos Kn - %) 7T8:| ds cos [(n - %)mﬁ]
+ﬁ /01 g(s) cos Kn - %) Ws} ds sin Kn - %) Wt]

2

1ot sin |(n — 3)m
+2/0 /o Q(s, ) cos Kn— %) Ws} { (Ez— %)i t} coS [(n— %) WT]

G0 = 3 s (1 ) ] s (1~ ) ]
Then (e, ) = (1—2)?A@) + [ [7(5) = (1= 9)?A0)] Gula: 5, 1)ds
+ [ o)~ (L= 9240 G 5. 1)ds
4 /O1 [ (@G, 7+ (1= 574 (7) +24()] Gl 5, ¢~ m)ards
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10.3 Green’s Function for Sturm-Liouville Problems

Problems

1. Show that Green’s function is unique if it exists.
Hint: Show that if there are 2 Green’s functions G(z; s) and H(z;s) then

/01 [G(x;5) — H(z: )] f(s)ds = 0.

2. Find Green’s function for each

a.
—kuyz, = f(x), 0<z<L,
u'(0) =0,
u(L) = 0.
b.
— Uy = F(2), 0<z<L,
u'(0) =0,
u'(L) = 0.
c.

3. Find Green’s function for
—ky" + ly =0, 0<z<l,
y(0) —y'(0) =0,
y(1) = 0.
4. Find Green’s function for the initial value problem
Ly = f(z),
y(0) =y'(0) = 0.

Show that the solution is

5. Prove (10.3.22).
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1. Assume there exist 2 Green’s functions G(z, s), H(z, s)

1 1
Then /0 G(z, s)f(s)ds = /0 H(z, s)f(s)ds for all f.
3o | G, 5) — H(z, $)] f(s)ds =0 for all f.
= G(z, s)— H(x, s) =0= G(x, s) = H(z, s)
= G if it exists, is unique.
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2a. —kty, = f(x) O<xz<L plx)=k
W(0)=0 w(L)=0
Solve: —ku" =0 4/(0)=0
—kv" =0 w(L)=0
Choose c=—1 so kW =-1
u=ar+b W(0)=a=0 =u=>0
v=azr+f v(L)=0=aL+ 6 =—alL
W:’ b a(x—1L) ’ b
0 o
kab = —1
1
Let b=1, then a = 7z
Then |u(z) =1
1 L 1
and |v(x) = —zTt T =——(z—1L)
u(s)v(z) 0<s<zx<1
G(z, s) =
u(z)v(s) 0<x<s<1
1
—E(x—L) 0<s<z<l1
G(z, s) =
1
—E(S—L) 0<z<s<l1
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2b. —Upe = f(z) O0<z<L
W(0)=0 «(L)=0 pz)=-1

u'()=0 4'(0)=0=>u=a

So
aax 0<s<z<1

G(z, s) =
aa 0<zr<s<1

Therefore Green’s function is a constant

(For a Newman problem, the solution is not unique).
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2c. —Uyy = f(2) O<z<L
uw(0) —u'(0) =0 w(L)=0
—u"'=0 u=ax+b = (a(0)+b)—a=0 = b=a

- [u=artd

—"=0 v=ar+p v(l)=0 = al=-p = [=-aL

= |v=alz—L)

Let c¢= -1

ar+a a(x—L)
W= =1 = alar+a)—aalr—L)=
a a
1
Let a=1l=>ar+a—ar+al=1 or a(l+L)=1 = a=-——+
1+ L
u=x+1
1
= — L
v 1+L(3: )
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Let

—ky"+ly=0 O<z<l

—ku” 4+ lu=0

l
u”—Eu:O

M =/(/k then u=ae +be
u(0) —u/(0) =0 ae™ +be ™ — ae 4+ bre ™ g = 0
a+b—ar+bA=0 = a(l=XN)+b1+A)=0

(=1+X)
(1+X)

= a

A—1
u=a [e” + —e)“”]

A+1

—kv" +lv=0 0v(1)=0

V= XNo=0 v=0ac+ e v(l)=0=ac+ G

A

—ae
o
V= [e)\x e ,\x}

A—1
a 6)@ + E/\ " 1§€—Ax] a {6)@ _ 62)\67)@}
p— k pu—
—22 4\
a | e + ( 3 ++1 ) e ’\‘”] a [)\e’\f” + )\6”‘6_)‘“}
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A — A
= k/2a | \e*
a /ale +/\+1]
Let a=1
A—1 k
Az Ax As 2\ _—As
(6 e ) (2(Ae%+f—;§) (4= o)
G(z; s) =

(by symetry) 0<zr<s<l1
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d ( d
4. Let’s take Ly = 7o \P < dy> +qy

y(x) = / G(z; s)f(s)ds clearly satisfies  y(0) =0, since, in this case,
0

both limits of integration are zero.

y'(x) = Gx; 2) f(z) + /Ox %ﬂs)ds

y’(()) =0 implies G(z; ) =0

Differentiate again after multiplying by p(z)

dci < dd ) tay= % {P(ﬁf) /Ox Wf(s)ds}

+9(2) [ Gla: 5)f(s)ds
Note that p(x) and ¢(z) can be put inside the integral on s !

_ 0G(z; s)

8 p)f)

S=I

Ll

+ [ Ha@)Gas 5)} f(s)ds

0G(z; s)

Thus Ly = /096 LG f(s)ds + [p(x) Oz

In order to get f(x) on the right hand side we must have

(will anihilate the integral)

and

we also need

G(z; x) =0| (seen earlier)
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Another way to solve problem 4
Let Ly=(py) +ay=f

y(0) =4'(0) =0

Then Lv=20 has 2 linearly independent solutions v; and wvs.
Define w(z) = vy (x) /Ox vo(8) f(s)ds — vo() /Ox v1(s)f(s)ds
Then w'(z) = vi(x) /Ox vo(8) f(s)ds — vh(x) /Ox v1(s)f(s)ds

+ui(z)va(2) f(2) — va(z)v1 (2) f(2)
So: w'(x) = vy(x) /Ox vo(8) f(s)ds — vh(x) /Ox v1(8)f(s)ds

d

So (pu'(z)) = - [p(x)v](z)] /Ox vo(8)f(s)ds — p [p(z)vh(x)] /Ox v1(s)f(s)ds

+p(x) [vy (z)va(7) — vy(z)vr (2)] f ()

= —q(z)w(z) + p(x) [v1(2)va(v) — vh(v)vi(2)] f(2)

=c(see problem 5 next)

Hence (pw") + qu = cf

where w(0) =w'(0) =0

So Y= v is a solution to
c

(y) +aqy=f

with y(0) = ¢'(0) =0

Thus y(x) = /Ox f(s) v (@)va(s) — va(w)vi(5) ds

!/

p(x) [v1(x)va () — va(z)v1]
So y(x) = /Ox f(8)G(z; s)ds

where




And we can see that
LG =0 For z>s

G(z; ) =0
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5. Prove

To compute

Divide by p

Thus

p(x)W(z) =c
u, v both satisfythe same ODE i.e.
—(pu) +qu=0
(') +qv=0
W(x) =uv" —vu

p(u'v —v'u) we differentiate the Wronskian W (x)

dw dw
— =uv F+w” = — v = |w - = —

dx dx

—(pu) +qu=0 = —pu'—pu"+qu=0

also —p'v' —pv” +qu =0

/

— v —p’ u
Pw—w+2% -0 orR vw="ys+2¢
p p p p
—p' v —p' v
Po—w+@—0 or v="Ly4 ¥
p p p p
W) v W) u /
wv” —vu” = u( pv'—i—q—)—v(—pu'—i—q—) zg[uvl—vu’]
p p p p p
aw  —p
= — = pW SO W’p:Wp,
dx P

(Wp) =W'p+Wp' so using the above (Wp)' =W'p—W'p=0

(Wp) =0 and Wp=c
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10.4 Dirac Delta Function

Problems
1. Derive (10.4.3) from (10.4.2).
2. Show that (10.4.8) satisfies (10.4.7).

3. Derive (10.4.9)

Hint: use a change of variables £ = ¢(x — ;).
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1. fla) = /abf(:z:l-)é(:z: “a)de (10.4.2)

Let flz)=1 =ze(—o0, 00). Then f(x;) =1 for all z;

So f(x)zlz/_o:ol-é(x—xi)dx

330



2. Show (10.4.8) satisfies (10.4.7)

T

H(x —x;) = . (& —x;)dE  (10.4.8)
0 <z
H(z —z;) = (10.4.7)
1 >

Let F'(&, x) be defined by

1 &<z
F(S,x){
0 &>

Then / 5(€ — a)de = / F(E, 2)5(€ — 2;)de
since on the other interval ' = 0.
But using (10.4.5), the integral on the right is F'(x;, x)

Notice that
1 ;<
F(z;, x) =
0 z;>«x

which is the definition of the Heaviside function
H(zx — ;)

Thus we get (10.4.8)
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3. Prove:

Compute the intergral:
make a transformation:

1
then dr = —dy
c
for ¢ > 0 the limits:
for ¢ < 0 the limits:

Combining the two:

But f(xo) = /

therefore

—0o0

/—O:of (% +"50) 5(y)%dy = %f(fo)

[ (Y ) s)5 dy = 2 fwo)

o0

f(z)do(x — xo) dx

[e'e) 1 [e'e)
/ F@) [ = o)) dr = 1 1 (@) — ) da

and we have the required relationship for ¢ functions.
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10.5 Nonhomogeneous Boundary Conditions
Problems
1. Consider

Up = Ugy + Q(x, 1), 0<z<l, t >0,

subject to
u(0,t) = u,(1,t) =0,

u(z,0) = f(z).
a. Solve by the method of eigenfunction expansion.

b. Determine the Green’s function.

c. If Q(z,t) = Q(x), independent of ¢, take the limit as ¢ — oo of part (b) in order to
determine the Green’s function for the steady state.

2. Consider
Uze +u = f(x), 0<z<1,

u(0) = u(1) = 0.

Determine the Green’s function.

3. Give the solution of the following problems in terms of the Green’s function

Uz = f(2), subject to u(0) = A, u.(1) = B.
b. Uy +u= f(zx), subject to u(0) = A, u(l) = B.
C. Uy = f(x), subject to u(0) = A, uz (1) +u(l) =0.
4. Solve e
- = oz —s),
G(0;s) = 0.

Show that G(x;s) is not symmetric.

5. Solve

u(0) = u(1) = 1, (0) = (1) = 0,

by obtaining Green’s function.
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So:

subject to: u(0, t) = uy(1,t) =0 wu(z, 0) = f(x)
gzﬁn(x):sin(n—%)mm n=12 ...
)\n:Kn—%)Wr, n=1,2,...

Expand: Qz, t) = 2 n(t) sin <n - %) T

The coeflicients are:

qn(t) =2 /01 Q(z, t)sin (n — %) rx dx

> 1
Expand: u(z, t) =) u,(t) sin (n — 5) T
n=1

It was shown in Chapter 8 that the coefficients are:

un(t) = o(n=3)"n% <2 /01 f(z)sin <n - %) (e dx) —|—/Ot qn(T)e*("*%)QWQ(tfr) dr

u(z, t) = /01 f(s) LE;QSin Kn — %) WS} sin [(n — %) Wx} 6*("*% ’

+/01 /OtQ(s, ) Lﬁ;QSin Kn — %) Ws} sin [(n — %) WZE} e("%)g’rg(tﬂ] drds

G(z; s, t) = zn: 2sin [(n — %) WS] sin Kn - %) X

n=1
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c. If Qz, t) = Q(x), find the steady state solution

tlir?ou(x’ t) = /01 f(s) [i 2sin (n - %) TS sin <n — %) 7TZL"| ds Llim e("%)Qﬂgt]

—00
n=1

t—o0

1 > 1 1 1\2 o t 1\2 o
+/ Q(s) 2sin <n — —) TS sin <n — —) mx ds lim e’("’i) g t/ e’(”*i) ~Tdr
0 1 2 2 0

n=

Therefore

tliglou(x, t) = /01 Q(s) {i 2z sin <n — %) mssin (n - %) mc} ds

2
n=1 (n — %) 2
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2. Uzz +u = f(x) 0<z<l1
subject to u(0)=u(1)=0

Solve the 2 ODEs to get G:

u' = —u
= u(z) = asinz + bcosx uw(0)=0=0=0
u(0) =0
v = —v
= v(x) = asinz + fcosx v(l)=0 = asinl+fcosl=0 = [=—atanl

U= asine

v=qasinxr —atanlcosz

asinx «(sinx — tan1cos )
= qa |sin z cos & + tan 1 sin® 2 — sin 2 cos = + tan 1 cos® x}

W =
acosz «afcosx + tanlsinz)
W = aatanl
So actanl =c let c=tanl =a=—
a
I :
u=—sinx v = «a(sinxz — tan 1 cos )
a
L. .
—sinsa(sinz —tanlcosz) s <z
a
G(z; 5) =
1
—sinza(sins —tanlcoss) z <s
Therefore:
sins[sinz —tanlcosz] 0<s<z<l1
G(z; s) =
0<r<s<l1

sinz [sins — tan 1 cos s]
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3 a. Uz = f()
u(0)=A4 wu,(1)=DB

To get G(z; s),

solve the homogeneous equation with homogeneous boundary conditions

Ure =0 w(0) =0 u,(l)=0

uW'=0 u0)=0= wu=ar+b b=0 = u=ar

V"'=0 V(0)=0= v=azx+p V(1)=a=0 = v=0

axr [
a 0 coefficent of  w..

Let 6=1 then a=—1

and

1 :
u(s) = /0 G(z; s)f(z)dx — G(1; s)B — A% lz=0
G(1; s) = —s
g | 0 5= ie,
I 0 — lzm0 = —1
v -1 z<s v
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—s s<zx
where G(z; s) =
—x r<s
1
Check the answer by substituting: u(s) = / G(z; s)f(z)dx+ A+ Bs
0

Write this as 2 integrals substituting for G:

u(s) :/Os—xf(x)dx—i—/: —sf(z)dx+ A+ Bs

0 1
U(O):/O —xf(x)dx—i—/o —0-f(z)dr+A+B-0=+A checks
—
-0

Recall how to differentiate an integral whose limits depend on the variable of integration

() = =sf(s) + 8 () + [ () dr+ B

=0

Defferentiate again: u”’(s) = f(s) thus the equation checks

W'(1)=B the second boundary condition checks
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3. b. Uzz +u = f(x)
subject to uw(0)=A wu(l)=1RB

From problem 2,

sins[sine —tanlcosx] s <z

G(z; s) =
sinz [sins —tanlcoss] x<s
dG(z;
If x>s %zsinscosx—l—sinstanlsinx
x
dG . . :
So at x =1, d—|x:1=Slnscosl+smstanlsln1
x
dG(z;
It  z<s; dG(w; s) = cosz [sin s — tan 1 cos ]
dx
dG
So at x =0, d—]x:o:sins—tanlcoss
x

1
u(s) = /o G(z; s)f(z)dx + Blsins(cos1 +tanlsinl)] — A[sin s — tan 1 cos s
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3. c. Uz = f()
u(0)=A wu,(1)4+u(l)=0

The homogeneous equation with homogeneous boundary conditions:
Uz =0 w(0) =0 u,(1)+u(l)=0
u'=0 wu(0)=0 = wu=ar+b b=0 = u=ar
V"'=0 V(1) +0v(1)=0= v=azx+p; at+a+F=0

20+ =0 (=2« = v=oar— 2«

ar or— 2« ]
W = = —2aa=c= -1 = aa=g
a «
Let a=1 = o= %
Therefore
u(zr) = w; v(z) ==(x—2)
—s(x—2) s<zx
G(z; s) =
—z(s—2) z<s
It dG(z,s) 1 N dG 1 dG 5—2
e dr  2° dr |17 2° dr "0 2
1
u(s) = [ Gla; 5)f(x) dw = uGa [} + G |
0
-2
uGy b = u(1)% - ufo) B2
2 = 2
A

S
Gu, (1) =G |p=1 uz(1l) = G =0 u (0) = —éux(l)




— /0 G(x; s)f(x)dx + A@u(l) - g (u(1) + uy(1))

u(s) = /01 G(z; s)f(z)dx + %A(s —2)
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e

4. Solve o Sz —s) subject to G(0;5)=0
: d
Since d—(H(x—s))zé(I—s) = G=H(z—-s)
x
G(0; s) = H(—s)
0 z>s
G(zx; s) =
1 z2<s

Therefore GG is NOT symmetric.
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5. Solve Uzzae = f()
subject to
uw(0) = u(l) =u'(0) =u"(1) =0
Since LU = Uz

with the stated boundary conditions is self-adjoint, we have
1
/ (LG — GLu)dr =0
0
for u, G satisfying the boundary conditions.

In particular, if

Lu=f, LG (z; s) =0(z — s)

then
1 1 1 1
/ ulG dx — / GLudr = / ud(z — s)dz —/ G(s; z)f(x)dx
0 0 0 0
1
= u(s) — / G(s; x)f(z) dx.
0
1
Therefore u(z) = / G(z; s)f(s)ds.
0
Hence we seek a solution to LG (x; s) =0(x —s)
G(0; s) = G(1; s) = G4(0; s) = Gu(1; 8) =0
S+ S+
Also /_ Grzan(T; S) dx:/_ dz—s)de =1
= Gawe [0 = 1.

Furthermore, G,, G, and G are continuous at z = s
Using LG =0 if x #s,

we can define  G(z; s) on [0, s) and (s, 1], and use the above conditions to determine the
parameters as follows:

ar® +ba* +ex+d x<s
G(z; s) =
ar® + Br* +yr +6 x> s
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G(0;8) =0 =d=0

G.(0; s) =0 =c=0

G(1;8)=0 =a+f+7+6=0

Goe(1;8) =0 = 6a+23=0 = f=-3a
=a—-3a+v+d6d=0

=0=20—7

ax?’ —+ bIQ
G(z; s) =

&x3_ﬂx2+7x+2&_ﬁy

_=1 = 6a—6a=1 L

1
(O‘ - g) o + ba?
G(x; s) =
az® = 30a” + 91 + 20—y

Gz st = Gazls-
1
6(0‘_5>s+25:6%_6a

o [ 67 G

az® —30a” + 91 + 20 — v

Gx ’S+ = Gx ’r

1
3(06— 6)52—1- (8—604)3 — 3052 _6&54_7
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G(z; s) =

z? —S—?)JFS—Q—!Jra:QS—3—§52+f
1274 6] 4 4 2
G(x, s) =
@ ¢) 5 3+x2 1+2x3 32+
11271 "6 T |4 qt

BRI R
s“+s bas = —6as + 7y

2
Lo
758
1
(&—6)x3+(§—3a)x2
G(z; s) =
2 2
ozx3—304x2+5x+204—5
Gl = G |s-
1 3 2
(a—6)33+(§—3a)s2:a33—30z82+%+204—%
3 3 3 2
Qs3—€+%—30482:&53—30482-1-%4-2&—%
s § s s
2 = — — — = _ =
T2 7T a1
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10.6 Fredholm Alternative And Modified Green’s Functions

Problems
1. Use Fredholm alternative to find out if

Upe +u = B+ x, O<z<m,

subject to
u(0) = u(m) =0,

has a solution for all g or only for certain values of .
2. Without determining u(z), how many solutions are there of

Ugy + YU = COST

a. v=1and u(0) =u(r) =
b. v =1and u,(0) = ux(ﬂ) 0.
c. v=—1andu(0)=u(r ) 0.
d. v=2and u(0) = u(r) =

3. Are there any values of  for which there are solutions of
Upe +u = [+ x, —T<x<T
u(=m) = u(m),

Ug(—7) = ug(m)?

4. Consider
Uge +u =1

Find the general solution.

b. Obtain the solution satisfying

Is your answer consistent with Fredholm alternative?

c. Obtain the solution satisfying

Is your answer consistent with Fredholm alternative?

5. Obtain the solution for



6. Determine the modified Green’s function required for
Uz +u = F(x),

u(0) = A, u(r) = B.

Assume that F satisfies the solvability condition. Obtain the solution in terms of the modified
Green’s function.
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Homogenous:

So

Upp +u=0F+2 0<z<7
uw(0) =u(r) =0

Uge +u =0 u(0)=u(r)=0
ug(x) =sinz # 0

/o (B+z)sinzdr = —fcosz|j + (sinz — zcosx)|

i
0

=—0(-1—1)—mcosm=420+7=0 =0
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2 a. Upe +yu=0 v=1 u(0)=u(r)=0

ug =sinx

™ 1
/ sinz coszdr = §sir12x|6r =0
0

|infinite number of solutions |

2 b. uz(0) = uy(m) =0

Has Uy = COS T
/ cos?zdr = = # 0
0 2

no solution

No nontrivial homogenous solution

unique solution

2 d. Ugy = —2U
ug = sin(Ax) = A = +2 = \=+V2

ug(0) = sin(v/2:0) = 0 but  ug(r) =sin(v/2-7) # 0= no nontrivial solution

‘ unique solution ‘
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Ugg = —V Vg = COSX +Sinx
/ (B4 x)(cosz +sinx)dr =0

Note that integrating an odd function on the symmetric interval gives zero. So we have left:

m
—T

™ s
/ ﬁcosxdx—l—/ xsinxdx:ﬁsinx‘iﬂ—l—(sinx—xcosx)
—T —T

=060—-0)+(0—-0)+(0—0) —7cosm — wcos(—m) = 42w # 0

Regardless of value of 3 < f, cosx ># 0 =
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4 a. Ugy + U =1

Homogenous: uz, +u =0 = u(x) = ¢y cosx + ¢y sina

Get a particular solution of the inhomogeneous
up, = A uy+u, =1 0+A=1 =A=1

So Ug = Uy + Up = 1 COST + co8inx + 1

b u0)=0 =c+1=0
u(r) =0 = —c+1=0
No solution for the system = No solution.
/Oﬂ(l)sinxdx = —cosz|f=—(=1)+(1)=2#0

No solution by Fredholm either

4c. uz(0) = uy(m) =0
uz(0) = coc080 =0 ux(m) = cocosm =0
c =0 = infinite number of solutions

= u=-ccosxr—+1

™
/ l-cosx =sinz|j =0 = infinite number of solutions by Fredholm.
0
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5. This problem is similar to the example (10.6.2)-(10.6.3). In this case A = —1 which
is NOT n? for any integer. Thus the nonhomogeneous has a unique solution (Fredholm
alternative). The solution can be found by the method of eigenfunction expansion. Note

1
that the eigenfunctions are sin (n — 5) T, n =1,2,.... Expandind the right hand side

in terms of the eigenfunctions we have

1

o
e’ = Z Q, Sin (n — 5) T,
n=1

with coefficients given by
o €7 sin (n — %) Tx dr

Ji sin? (n — %) mr dx

oy =

Using the same expansion for u, we get the coefficients u,, by substitution in the differential

equation
Qp

1+(n—%)27r2

Uy = —
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6. Upe +u=F(z) u(0)=A wu(r)=DB
Solve the homogenous problem first to find ~ G(x, s)
Upe +u=0 u(0)=0=u(r)
The homogenous problem has wy =sinx  as a nontrivial solution

(Assume /7r F(z)sinzdx = 0)
0

/ sinz [§(x — s) + csin z] dl‘:O:sins—i—c/ sin? x dw
0 0

—_——
T
2
N sin s
Cc= —
/2
., PG 2 sin z si
LG=L 0 6= () 2ORTES
dx? 7

G(0; s) = G(m; 5) =0

Assume G is continuous at = = s

T d? st *92
/ de—l—/ de—/ (x —s) dl‘-i—/ Slnxsmsdx
e diEQ s~

dG
— " +0=140 (by continuity)
dx
For o4 26 e 2 sin x sin s
dzx? s
e fy A 2sins\ |
Try variation of parameters G'+G= < > sinx
T

@H =c1COST + Ccysinx
Go(x) = uy () cos z + uy(z) sinz

G'p(x) = uj(x) cosz — uy(x) sinx + uy(z) sin x + ug(x) cos

= [uf cos z + ub sin x] + [—uy sin z + ug cos ]

set this to zero

G (r) = —u) sin + uy cos & — uy COS T — Uy sinx
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A A 2sin s
G+ Gp = —u) sing + uy cos v = ———sinx
m

Therefore u} and u), satisfy the system
ujcosz + uysina =0

281n3>

—uj sinx + uycosx = sinx (
T

The Wronskian is:
W =cos?z +sin’z =1

The solution is:
2 sin s)

U = —sinxsinx(
T

2sin s . o 2sins [ 1 . x
u = ——-7= {/sm xdx] = — {—5 cosxsmx—I—E

s T
r. . x .
U] = —sinssinxcosr — —sin s
T T
, ) 2sin s
Uy = COSTSINT | ———
T
2sin s . 2sins [1 ., 1. . 9
Ug = —— [ cosrsinxdr = —— |=sin“z| = —sinssin“x
s T 2 s
The solution is
. . 1 . . 1. L9 .
G(z; s) = ¢ cosx+cosinx+— cosrsin s [cos z sin & — x|+ — sin s sin” x sin
T T
. T . sins 9 . 9
:clcosx+cgsmx——cosxsms—i——smx{cos T -+ sin x}
T T
. T . sins .
=C1COST + CoSINx — —CcoSxrsIns + ——sIne
s T
So
r .. x . .
—SINSSINXL — —COSTSINS+CLCOST +Ccosinxr T <S8
R ™ T
G(z; s) =
I, . x . .
—SINZTSINS — —COSTSINS + C3COST + Cc48INT T > 8
T T
From the endpoints: G0;8)=0=0c¢,=0
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G(m; 8) =0=c3(—1) +sins=0= c3 = +sins

1 . . x . .
—SINSSINXL — — COSXTSINS + CoSIn T xr <S
A ™ ™
G(z; s) =
1 . ) T ) ) )
—SINITSINS — —COSTSINS +SINSCOST +Cc4SINxT T > 8
™ ™

Continuity at x =3s; c¢ysins = +sinscoss + c4sin s

= Cy =4+ COSS

1 . . x ) . .
—SINSSINT ——cosxrsins +cosssine +csinxr <SS
A ™ ™
G(z; s) =
1 . . x . . .
—SInNxrsSIns — —CcosxrsSIns+cosxrsins—+csinxr T > S
™ ™

Checking jump in derivative

dG' |+
— - =1 = cosscosz +sinzsin s = sin’(s) + cos?(s) = 1
d"L' r—S
. S .
Symmetry: Letting = ——CO0SS§ and reordering terms
T
L. : x : s .
—sinssinz + cosssinx — —cosxsins — —cosssinx < s
. T T T
G(z; s) =
L. . s . x :
—sinzsins + cosxsins — —cosssine — —coszsins T > s
s s s

To obtain a solution using G(z, s), notice
/7r [uﬁé — @Eu} dr = /7r {u(é’" +G) -G + u)} dx
0 0

™

0

= /7r {u@" — Gu" + (uG — u@)} dx = (u@' - Gu’) ‘g = ul
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dG 1 . . . s 1 . T . )
— | = (—sinscosz —sinzsins — —cosscosz — —cosxsins + —sinrsin s | |y
dx T T T T

1 . s 1 . s
= ——sms+ —Ccoss+ —sIns = —cCcoss
™ m m ™

dG 1. 1 . xr . s
—Jop = (—sinscosx + cosscosz — —coswsins + —sinzsins — — cos scos x| |—o
dx T T T T

. 1 . S S
= —sins+coss— —sSIns — —CoSS = <1——> Cos S
T T T T

Also notice:

/7r [uﬁ@—é’ﬁu} dx:/ﬁu[é(x—s)%—gsinssinx} dx—/ﬂCA}Fdx
0 0 0

™

. 9 gin s si .
= u(s) + /0 u(x)wdx —/0 GF(x)dx

7

a multiple of the homogenous solution

so disregard to get particular solution

e
dx

So u(s)—/ﬁCA}'F(x)dx:Bﬁ
0

r=m A
dx

=0

Interchanging = and s, we get

u(z) = /07r G(x; s)F(s)ds + EI cosx — A <1 - E) coS T

™ ™
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10.7 Green’s Function For Poisson’s Equation
Problems

1. Derive Green’s function for Poisson’s equation on infinite three dimensional space. What
is the condition at infinity required to ensure vanishing contribution from the boundary
integral?

2. Show that Green’s function (10.7.37) satisfies the boundary condition (10.7.35).

3. Use (10.7.39) to obtain the solution of Laplace’s equation on the upper half plane subject
to
u(z,0) = h(x)
4. Use the method of eigenfunction expansion to determine G(7 ) if
V3G = 6(7 —1¢), O<r<l O<y<l
subject to the following boundary conditions
G(0,y;70) = Go(1,y370) = Gy(,0;70) = Gy(x, 1;75) = 0

5. Solve the above problem inside a unit cube with zero Dirichlet boundary condition on
all sides.

6. Derive Green’s function for Poisson’s equation on a circle by using the method of images.

7. Use the above Green’s function to show that Laplace’s equation inside a circle of radius
p with
u(r,0) = h(0) forr =p

is given by Poisson’s formula

6) =~ [ P do
ulr, >_%/o (0)7°2+p2—2p7"cos(0—90) o

8. Determine Green’s function for the right half plane.

9. Determine Green’s function for the upper half plane subject to

oG
8—y =0 ony = 0.
Use it to solve Poisson’s equation
Viu=f
0
3_Z = h(x), ony=0.

Ignore the contributions at infinity.

10. Use the method of images to solve
V3G = 6(7 —7¢)
in the first quadrant with G = 0 on the boundary.
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1. Solve
= f(™), 7=(z,y,2)eR’

Green’s function G(7; 7) satisfies
V3G = 6(z — 20) 6(y — y0) 3(2 — 20)

Because of symmetry we have

1 d dG

— — =0 f 0

P’ dp( dp) o7
where p = |7 — Tyl

The solution is done by integration

, dG
=C

Divide by p? and integrate again

C

To obtain the constants, we integrate over a sphere of radius p containing the point (xg, yo, 20),

thus
///VQGd.Tdde:///(S(x_xo) 0y —yo) 0(2 — 20)dxdydz = 1.

But by Green’s formula, the left hand side is

//VG ndS — // —dS—— T

where S is the surface of the sphere.

Thus 90
—4 =1
dp '
oG 1
op  4mp?
Since G=-— ¢ +D
p
oG C
then (9—/) = E Comparing a—p we have
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C_ 1 _ ,_1
p? Amp? T Arn
We can take D = 0, thus
1
G(p) = ——
(p) yr

The condition at infinity can be obtained by using Green’s formula as in the text.

}Lrgo/[g(uVG — GVu) -1idS =0
oG ou

1 2 _ e —

/Jlggo p (u ap Gap> 0

or by using G from above:

ou
li — 11 =0
P <u + pap>

359



2. Show that 1 1

satisfies
G(l‘7 Oa Lo, yO) =0
Recall
r= (ZE, y)
0 (Im yo)
Ty = (I07 _yO)
G(z, 0; xq, yo) —1n\/ (x —20)? 4+ (0 —yp)?

——ln\/x—xo + (0 + yo)?

Since the terms under square root signs are identical we get zero for G.
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3. Use

u(r) = //f(Fo) G(7; 7o) dro + /O:O h(fo)(x_i({ﬁd%
To obtain the solution of

Viu=0 y>0

u(z, 0) = h(z).
Since this is Laplace’s equation f(7) = 0 and the first integral is zero, thus

. ¥
u@) = [ (o) EE et
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4. Use the method of eigenfunction expansion to determine G(7; 75) on [0, 1] x [0, 1]

Because of the boundary conditions, the eigenfunctions are: cosnmty n =20, 1,...

G(r; 7o) = Z gn () cosnmy
or . .
G(r; 7o) = Z Jn(y) cos <n + 5) X
n=1

We take the first expansion and substitute in the equation

Z gn(x)cosnmy + Z(_H2W2)gn(x) cosnmy =0, 747
n=0

n=1

gl(z) —n*rig,(x) =0 n=1,2, ...

9% =0
Subject to:

gn(0) =0

gn(1) =0

Solve, apply the jump condition for the derivative and so on.
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VG =6(F—7) 0<uz,y 2 <1
G0,y,2)=G(1,y,2)=0
G(r,0,2)=G(z, 1,2) =0
G(z,y,0)=G(z,y,1)=0

Because of the boundary conditions, the eigenfunctions are: sinnwy sinmnz, n=1,2, ...,
m=12,...

Thus e
G(F 70) = Y > gnm(x) sinnrysinmrz
n=1m=1

(other possibilities exist, depending on the two variables we use. We can even take expansion
in all 3 variables !)
Substitute in the equation

SN gl (x) sinnry sinmrz+

o o0
> (—nPn® — mPr?) gum(z) sinnry sinmrz =0, 7 # 7.

The boundary conditions are the result of using the two boundary conditions we didn’t use
in getting the eigenfunction, in this case G(0, y, z) = G(1, y, z) = 0.

Solve the boundary value problem to get g, ()
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6. Use the method of images to derive Green’s function for Poisson’s equation on a circle.
V2G(7: 7)) = 6(F— 7)) [F<a
G(r; 1) =0 for |fl=a

Let 75 be the reflected image of a point 7 (see figure). Then if G is the Green’s function for
the whole plane, we have

VQG(F; Fo) = 5(F— 770) - 5(F_ FJ)

Figure 61: The case § = 0

So
G(7: 7o) = |7 — 7ol — e Inff — 7| +C
75 7o) = — In|r — 79| —=— In|7" — 7
o o2 0o 0
1. |F=7)

dr 7P —7p
To find C, we note that when |F]l=a G(7; 7) = 0 and with 6 = 0 all 3 points coincide

1 ’& —F0’2
- O = — - IIl T o.2
A |a — 7
For 6 # 0 (see figure) G(7; 75) = 0
yields

! [IHL)_FM2 —In L_FOP] =0

|7 =75 ] o — 75 ?

*

Figure 62: The case 6 # 0
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So for all |r] = a,

|’I?—’I?0| |G—F0|2

[ =7g* e — 732
Note

|7 — 7ol? = 712 + |7o)* — 2|71 |7o] cos @

|7 — 7 |* = /12 + 7o | — 2|7 |75 ] cos O
Therefore

a2
7o ] =

70|

Note that when 7 is the center of the circle that 7] is at infinity.

1 2 =202 2
G(F: 7y) = —In (—Y 7ol )

47 |7 — 752 |70]?

Hence
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7. The solution in general is given by

u@ = [ [ £(7%) G(7 7o)diy
——
right hand side of equation=o0

+4 h(7) VL G(F ) - i dS
——
u on the boundary.

The normal to the circle is in the direction of radius.
§ b)), S
= T T
0 a?’_’b b) 0 ro=a

Convert G obtained in problem 6 to polar coordinates, differentiate and substitute in the
integral.
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8. Let
7= (z,y)

To = (9607 yo)

Then
77(? = (—950: yo)

is the image for the right half plane.

Therefore ]
G(Fs 7o) = 5 {m |7 — ) — In |7 — fg@

in a similar fashion to problem 6.

The solution of Poisson’s equation in general is

u(f) = / / F(7o) G 7)diy + 74 W(F) Vi, G(7 7o) - 1S
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9. For the upper half plane

Since 7o = (2o, —Yo)

oG
It is straightforward to check that 0 0, when y=0.
Y

The solution is given by

u(f) = / / FR) G 7)dFy + [ O:O Gz, y; w0, 0)h(zo)dzy
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10. To solve the problem in the first quadrant we take a reflection to the fourth quadrant
and the two are reflected to the left half.

*k Kk * %
(X9 Y0 )=(=%0,Y¥0) (%0 Yo)

*k

5 Fkk >K ** *
(% Y0 )=(=%Xo,~Yo) (X0, Y0)=(Xo, = Yo)

V2G = 6(7 — i) — 6(F — 7)) — 8(F — 75*)
+ (7 — )

S U e O
2 |F =71 |7 — g

= i In [(z — x0)2 + (y — yo)2] [(z + xO)Q + (y + y0>2]

dr (= 20)? + (Y +90)?] (& +20)* + (v — 0)?]

It is easy to see that on the axes G = 0.
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